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Quantum Computing:
What is it?

Why do it?
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Nomenclature

What is classical computing?

—

easy = “tractable” = “efficiently computable”
hard = “intractable” = “not efficiently computable”
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lab What is quantum computing?
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insoluble insoluble

factoring

easy

Nomenclature easy = “tractable” = “efficiently computable”
hard = “intractable” = “not efficiently computable”

In a world of quantum computers then we would need to abandon most of the
algorithms that are in use today. —Robin Balean, VeriSign Australia, 2008

Software updates, email, online banking, and the entire realm of public-key
cryptography and digital signatures rely on just two cryptography schemes to keep
them secure—RSA and elliptic-curve cryptography (ECC). They are exceedingly
impractical for today’s computers to crack, but if a quantum computer is ever built it
would be powerful enough to break both codes. Cryptographers are starting to take
the threat seriously, and last fall many of them gathered at the PQCrypto conference,
in Cincinnati, to examine the alternatives. —IEEE Spectrum, January 2009
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Why do quantum computing?

Shor’s factoring + Extended Church-Turing Thesis—foundation of theoretical

algorithm

e d z q
computer science for decades—is wrong

The assertion of the Church-Turing thesis
might be compared, for example, to
Galileo and Newton’s achievement in
putting physics on a mathematical basis.
By mathematically defining the computable
functions they enabled people to reason
precisely about those functions in a
mathematical manner, opening up a whole
new world of investigation.

—Michael Nielsen, UQ, 2004
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Shor’s factoring

algorithm

Why do quantum computing?

+ Extended Church-Turing Thesis—foundation of theoretical

C uter science for decades—is wron
. ?ﬂ}gn‘um mec%anlcs IS wrong 9

It’s entirely conceivable that quantum computing will turn out to
be impossible for a fundamental reason. This would be much
more interesting than if it’s possible, since it would overturn our
most basic ideas about the physical world. The only real way to
find out is to try to build a quantum computer. Such an effort
seems to me at least as scientifically important as (say) the
search for supersymmetry or the Higgs boson. | have no idea—
none—how far it will get in my lifetime.

—Scott Aaronson, MIT, 2006
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Shor’s factoring + Extended Church-Turing Thesis—foundation of theoretical

— c%n%uﬂer science for decades—is wrong
< Quantum mechanics IS wrong

+ A fast classical factoring algorithm exists
All three seem crazy. At least one is true!

algorithm

Lots of mathematicians have looked and think it can’t be
done, and lots of maths is now based on the impossibility of
doing it. — Andrew White, 2009

Computer scientists
and / or
Theoretical physicists
and /or
Mathematicians
will be

badly upset
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Shor’s factoring + Extended Church-Turing Thesis—foundation of theoretical

- c%sn%uier science for decades—is wrong
< Quantum mechanics IS wrong

+ A fast classical factoring algorithm exists
All three seem crazy. At least one is true!

algorithm

Church-Turing-Deutsch principle: Any physical process can be efficiently
simulated on a quantum computer
Nuclei move on the electronic potential energy surface (PES)

Knowledge of PES enables:

» Minima: equilibrium structures
» Saddle points: transition states
» Reaction rates & mechanisms %
» PES characterise most of

physical chemistry

Quantum
Emulation

Tree of approximation methods 1

for quantum chemistry




il Why do quantum computing?

[quantum.info

Shor’s factoring + Extended Church-Turing Thesis—foundation of theoretical

- C uter science for decades—is wron
. %Qn‘um mec%anlcs IS wrong 9

+ A fast classical factoring algorithm exists
All three seem crazy. At least one is true!

algorithm

Church-Turing-Deutsch principle: Any physical process can be efficiently
simulated on a quantum computer

Quantum computers are interesting physical systems in their own right




Simulating Quantum Systems
Richard Feynman

The real problem is simulating 1 i' >7 | )
ics ih dt ?7[} H w
Hopeless task on a classical computer No. of equations « eparticles
Let’s use quantum systems as Simulating physics with computers,

Int. J. Theoretical Physics (1982)
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+ Richard Feynman recognised that simulating QM was hopeless with classical computers. Suggested using
quantum systems to do an end run around the problem.

* In 1996 Seth Lloyd showed that Feymna was correct, at least for a very large class of physical systems. (In
more detail: correct for Hamiltonians that are a ‘sum of local interactions’.) He showed that an arbitrarily good
approximation of Hamiltonian evolution could be achieved with an initial wavefunction encoded into a polynomial
number of qubits, acted on by a polynomial number of logic gates. The final wavefunction would be a very good
approximation to that achieved with the physical Hamiltonian.

+ Well that’s great, but how can we calculate some physical properties with this apporach?

+ As you heard on Monday, in 2005, Alan Aspuru-Guzik showed that you could use this apporach to calculate
nergy in a chemical problem, using the iterative phase estimation algorithm. Now this is good news for photonics,
as we realised the phase estimation algorithm a couple of years ago for Shor’s algorithm, as reported in the 2007
Review.
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Simulating quantum chemistry




Simulating Quantum Systems
Richard Feynman

The real problem is simulating £ d _
Hopeless task on a classical computer No. of equations « eparticles
Let’s use quantum systems as Simulating physics with computers,

. e Int. J. Theoretical Physics (1982)
computational building blocks!

E Seth LlgyshiuReynexaaras correct, for very large class of physical quantum systems
i

Given initial wavefunction,

No. qubits required

: : = poly(No. particles) - |7,D (O) > : e ik |¢ (t) )
| ) % Time evolution operator, . .
J&. | No. gates required « poly(particles) ___———— Approximation

Universal quantum simulators, Science (1996)

Alan Aspuru-Guzik HY=EyY —
Can calculate energy Eigenvalue problem
using the lterative Phase — AHUh W — aiEth W — A
) Estimation Algorithm UW=e W=ethW=eoW
- Phase estimation problem

Simulated quantum computation of molecular energies,

...can also efficiently simulate chemical reactions Science (2005)
Polynomial-time quantum algorithm for the simulation of chemical dynamics,
PNAS 105. 18681 (2008)

+ Richard Feynman recognised that simulating QM was hopeless with classical computers. Suggested using
quantum systems to do an end run around the problem.

* In 1996 Seth Lloyd showed that Feymna was correct, at least for a very large class of physical systems. (In
more detail: correct for Hamiltonians that are a ‘sum of local interactions’.) He showed that an arbitrarily good
approximation of Hamiltonian evolution could be achieved with an initial wavefunction encoded into a polynomial
number of qubits, acted on by a polynomial number of logic gates. The final wavefunction would be a very good
approximation to that achieved with the physical Hamiltonian.

+ Well that’s great, but how can we calculate some physical properties with this apporach?

+ As you heard on Monday, in 2005, Alan Aspuru-Guzik showed that you could use this apporach to calculate
nergy in a chemical problem, using the iterative phase estimation algorithm. Now this is good news for photonics,
as we realised the phase estimation algorithm a couple of years ago for Shor’s algorithm, as reported in the 2007
Review.
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Hydrogen molecule in a minimal basis
6 basis states

Atom A Atom B 2 molecular orbitals | t
le) =11s,> +I1s —+—
OO — gy — i
N/ e4— H
[1s) atomic 9= !

orbitals
Hamiltonian is a 6x6
operator with 2x2 blocks

A 2x2 matrix
eigenvalue problem

Lanyon, et al., Nature Chemistry 2, 106 (2010)

So solving this molecule directly will require a 6x6 unitary operator to be implemented with logic gates.
WAY BEYOND WHAT WE CAN DO AT THE MOMENT.
Exploit the block-diagonal structure, and just solve each 2x2 block separately.



Quantum chemistry of H,
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agrees to chemical precision

Lanyon, et al., Nature Chemistry 2, 106 (2010)

We parameterized the Hamiltonian by the atomic separation - and calculated all the eigenvalues,
using the quantum algorithm, at a range of different separations.
There are 4 eigen values, as opposed to 6 for the 6x6 hamiltonian due to some degeneracy



Quantum chemistry of H,

Explored a range of
algorithmic features:
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& Solutions




The Challenges

It is difficult to efficiently produce and detect single photons.

Current photonic entangling gates are inherently random

It is difficult to store photons




|

b A Single-Photon Source

quantum.info

{

Current best photon source: Well-understood spatial &
spontaneous downconversion frequency properties

[
K j
P 2

Conditional “1-photon” per mode Up 1o 83% coupling efficiency
3 Output from CZ gate
0.9999...

P(n) 0.95

0.8

1 2 n

0.85
. * Tangle
2-photon terms increase = Purity

quadratically with optical power O8] .+ Fidely

075/ 1% events cause
20% errors {
100 200 300 400 500 600
Power (mW)
Barbieri, Weinhold, Lanyon, Gilchrist, Resch, Aimeida and White, JMO 56, 209 (2009)

So how do we get a
better photon source? 0z

* Photonic QC needs single photons
* The best current apporixmation to a true single photon source is spontaneous downconversion.

* Downconversion modes with well-understood spaital and frequency properties, and excellent coupling efficiency: up to 89% has
been demonstrated (ADD reference to Franson?)

+ By conditioning on detection of single photon in one mode, with high probability there is a single photon in the other ... except
sometimes, there are two! Downconversion produces photon-pairs with some probability of two or three pairs occurring.

+ Two-photon terms increase quadratically with power. So the brighter the downconversion source, the worse it gets as a single-
photon source.

+ At first glance this isn’t such a bad effect: for example, Hong-Ou-Mandel visibility drops only slightly as the power is increased
nealry 10-fold.

* However, now let’s look at the output from a UQ-style optical CNOT gate. We see that higher-order terms seriously degrade the
entangled-state fidelity, purity, and tangle.

+ So how can we get a better downconversion source? Reducing pump power does the trick, but also reduces the count rate.



Better Single-photon Sources

Halve the peak power
Double the rate

Broome et al.,
Optics Express 19, 22698 (2011)
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+ So the first part of our solution is to reduce the power, but increase the repetition rate.

* Doubling the rate improves everything as you can see! (For 3 of these plots, each data point is from a full state
tomography measurement).

* The next two steps are to multiplex these sources, and to use them to improve the performance of integratedd
photonic gates, e.g. in this photo from UQ. Note that we’ve used the wrong wavelength laser to highlight things.
You can just see the fibre on the right here, but the chips are very low-loss and you can’t see the waveguides at
all. (Note: you *can* nicely see the reflection of Andrew’s finger and iPhone in the metal support under the chip).



Better Single-photon Sources:
Multiplexed downconversion

8-downconverter modular single-photon source
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control optics and electronics

Modular on-demand source proposal: OL 32, 2698 (2007)
Single-mode biphoton experiment: PRL 101, 153602 (2008)
PPKTP waveguide downconversion: OE 17, 12019 (2009)




Better Single-photon Sources:
Quantum Dots in Micropillars

« Controlled single-electron loading
+ Excellent single-photon source due

"opBUminatgn L SRR MLThgang
+ Optical cavity Q > 40,000
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Better Single-photon Detectors

‘2 f Thermometer Rn
Absorber, heat capacity C R
Weak thermal link, g

Thermal sink (50-100 mK) T

uQ: ~98.5%

Quantum efficiency, N~20 %
w. AR coating n-~95%

ler From Sae Woo Nam




It is difficult to efficiently produce and detect single photons.

Current photonic entangling gates are inherently random

It is difficult to store photons
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p - Strong
Nonlinearities

}-" Milburn,
{ PRL 62, 2124 (1988)

: Nemoto and Munro,
\l,_ PRL 93, 250502 (2004)
\

%

\

= Slowlight

Knill, Laflamme
& Milburn,
Nature 409,
46 (2001)

Gilchrist, White, & Munro
PRA 66,012106 (2002)

Franson, Jacobs & Pittman
PRA 70;:062302 (2004)
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p - Strong
Nonlinearities
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» 2004 - Franson'’s solution: deterministic entangling gate by combining
linear optics gates, quantum Zeno effect and nonlinear optics

1. Linear-optical gates fail by emitting 2 photons into one mode
2. Quantum-Zeno effect can suppress 2 photon events
3. Requires nonlinear interaction

e.g. universal gate: VSWAP

00— 5 = 1
| s SWAP[ 2 [NSWAP[ _
- /2 —»
0 1
N g
= = A
a N\
1 0
Franson, Jacobs, and Pittman,
- L - Physical Review A 70,

062302 (2004).
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» 2004 - Franson'’s solution: deterministic entangling gate by combining
linear optics gates, quantum Zeno effect and nonlinear optics

1. Linear optics gates fail by emitting 2 photons into one mode
2. Quantum Zeno effect can suppress 2 photon events
3. Requires nonlinear interaction

e.g. universal gate: VSWAP

cladding core

effects of loss? c.f. “interaction-free” measurements  t,.son. Jacobs, and Pittman.

Physical Review A 70,
Kwiat, et al., PRL 83, 4725 (1999)  Gilchrist, et al., PRA 66, 012106 (2002) 062302 (2004).




T
@I%b Quantum Zeno

[quantum.info

Tunable Diode
Laser @ 776 Tapered
Fiberin
Rb Ref Cell Vacuum

Tunable Diode &

Laser @ 780

000
Pol. Control

Data

Acquisition d

fw 2. ND
Detector Filter

(%)

£
= "1 induced by
921 20 photons
S Ot TTrTTITT T T ITTITT T M
® ¥ e T =

Detuning, A (GHz)

Hendrickson, Lai, Pittman and Franson, PRL 105, 173602 (2010)
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Luiten et al., preprint (2011)




It is difficult to efficiently produce and detect single photons.

Current photonic entangling gates are inherently random

It is difficult to store photons




Using quantum memories

VOLUME 84, NUMBER 7 PHYSICAL REVIEW LETTERS 14 FEBRUARY 2000

Nonlinear Optics and Quantum Entanglement of Ultraslow Single Photons

M.D. Lukin! and A. Imamoglu?

IITAMP, Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138
2Department of Electrical and Computer Engineering, and Department of Physics, University of California,
Santa Barbara, California 93106
(Received 19 October 1999)
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Using quantum memories

LETTERS

Vol 465/24 June 2010|dei:10.1038 /nature09081

Efficient quantum memory for light

Morgan P. Hedges', Jevon J. Longdell’, Yongmin Li* & Matthew J. Sellars'

Time, t (us)

recall efficiency of 69%

X
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quantum-noise limited




Using quantum memories

NN recall efficiency of 87%
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~winding in ground-state
wavefn, not undone by microscopic
details

We study |ID topological phases
using quantum walks

TOPOLOGY

| Integer winding number
characterises new phases
matter i=3

104

Quantum Hall effect




28 TOPOLOGICAL INSULATORS

nothing to do with shape, insulating is not the interesting feature™®...

what happens when we move
between areas with different
topological invariants? e.g. solid to
vacuum

Band gap

Surface state]

et Cannot transform one gapped H into
I another without closing the gap, c.f.
v can't transform sphere to a
band (BVB) doughnut without tearing a hole

Binding energy (eV)

-1 -0 0% 005 01

V]
k {1/A)

*Isn't that an awfully confusing name? Look, it's not my field. Nobody consulted me. —Chad Orzel

move from one bulk to another area, e.g. vacuum, with a different topological invariant

cannot transfrom one gapped H into another without closing the gap, c.f. can’t transfrom sphere to
doughnut with tearing a hole.

so insulator now has significant surface condductance, protected by topology



E8  TOPOLOGICAL INSULATORS

nothing to do with shape, insulating is not the interesting feature™®...

)

topological
insulator

simplest example of

knotted 3D electronic
if invariants always defined for insulators,  band structure, with 2 bands
surface must be metallic real structures require 4 bands!

topological invariants cannot remain defined

J. E. Moore, ‘The birth of topological insulators’, Nature 464, 194 (2010)

move from one bulk to another area, e.g. vacuum, with a different topological invariant

cannot transfrom one gapped H into another without closing the gap, c.f. can’t transfrom sphere to
doughnut with tearing a hole.

so insulator now has significant surface condductance, protected by topology
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move from one bulk to another area, e.g. vacuum, with a different topological invariant

cannot transfrom one gapped H into another without closing the gap, c.f. can’t transfrom sphere to
doughnut with tearing a hole.

so insulator now has significant surface condductance, protected by topology



TOPOLOGICAL INSULATORS
& QUANTUM WALKS

1) = [ abEo(kno(k)o] & 1) 8

=7

J asil-energy spectrum for Spinor eigenstates at

winding
number, Z

U(9) = 1 (0)%t U(9) = TR(9) UN () = HONG

Kitagawa, Berg, Rudner and Demler, Exploring Topological Phases With Quantum Walks, PRA, 82, (2010)

unitvector n8(k)= (nx, ny, nz) defines the quantization axis for the spinor eigenstates at each momentum k, o = (ox , oy, 0z ) is the
vector of Pauli matrices

Because the evolution is prescribed stroboscopically at unit intervals, the eigenvalues +EB(k) of H(B) are only determined up to
integer multiples of 2. The corresponding band structure is thus a “quasi-energy” spectrum, with 21t periodicity in energy.

Etheta energy eigenstates,
A theta are the spinor eigenstates
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coin and step now rewritten in momentum space



TOPOLOGICAL PHASES
% DISCRETE QUANTUM WA

FG = e—i'ergo'/Z

Time-reversal symmetry v’
THT '=H

T =T,P All QW to date, Z =1

T2 =1

Kitagawa, Berg, Rudner and Demler, Exploring Topological Phases With Quantum Walks, PRA, 82, (2010)

TR follows from chiral and PH. The other CPT. So must be in top-left box, PH and TR classify, and chiral
gives the flavour.

For canonical QW (using Hadamard), Z=1. Everyone who has done QW has done this. We want to study
transition, to another Z. Modify H to allow different chiral sym.
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split-step walk gap closes gap close
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| le@ |

4.Translate* Spin down to left
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Kitagawa, Berg, Rudner and Demler, Exploring Topological Phases With Quantum Walks, PRA, 82, (2010)
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different translations for spin-up and spin-down. Go back to syms, get this phase diagram. Blue is gap
closes at pi, red is gap closes at 0.
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Broome, Fedrizzi, Lanyon, Kassal, Aspuru-Guzik & White, PRL 104, 153602 (2010)
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Broome, Fedrizzi, Lanyon, Kassal, Aspuru-Guzik & White, PRL 104, 153602 (2010)




We can setup two distinct topological phases across the lattice



OTONIC SPLIT-STEP QV

We can setup two distinct topological phases across the lattice
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behaviour function of topology,

Z=1 :
not start & end points Z}\f

‘Observation of topologically protected bound states in photonic quantum walks’, preprint (201 1)




Emulating quantum biology
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Quantum walk zaal(z) = Bral(2) +#Zijka;(z)

Bacteriochlorophyl rings

B80O and B850 ol oL o
circular; decohered e




PRELIMINARY MODEL

Owens, Broome, et al., New |ournal of Physics 13, 075003 (201 1)




, Broome, et al., New |ournal of Physics 13, 075003 (201 1)
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24" measurements (overcomplete)

6-node ellipse circuit requires 191,102,976 measurements

Rhodobacter circuit requires  1.21x10%2 measurements rotations on
Poincaré sphere

Nhite et al, JOSA B 24, 172-183 (2007)




COMPRESSED SENSING ‘

T nignal, b = random sample
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Candes, Romberg, and Tao, IEEE Transactions on
Information Theory, 52 489 - 509 (2006)




PRESSED TOMOG

ich is maximally-sparse in its eigenbasis

4 -

in practice—as observed in QPT experim@f,
photonics, ion traps, and superconducting ¢ <
still compressible! Yoo .

Gross, Liu, Flammia, Becker, & Eisert, Shabani, Kosut, Mohseni, Rabitz, Broome, Almeida, Fedrizzi, & White,|
105, 150401 (2010). PRL 106, 100401 (201 1)




32 combinations
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two-photon CZ gate
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iz
zz XY

COMPRESSED TOMOGRAPHY

low-

Full tomo

Re(xsm)

noi

iz
z

IM(¥s)




Zib COMPRESSED TOMOGRAPHY

32 combinations

Shabani, Kosut, Mohseni, Rabitz, ™
Broome, Almeida, Fedrizzi, and White,

PRL 106, 100401 (2011)
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Conclusions
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auantuminto Simulation and emulation are different, and both valuable

Take home messages  Photonic quantum information is rapidly becoming scalable

Tomography is now a lot faster than it was

PhD, Postdocs available! See quantum.info
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