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What is the algorithm (what do we design)? 
What is the input? 

Quantum circuits 

algorithm: a series of unitary operators 

input: a unitary operator that queries an oracle 

Adiabatic quantum computing 

algorithm: an initial Hamiltonian and an interpolation scheme 

input: a term in the final Hamiltonian 

Quantum walks, a.k.a. scattering algorithms 

input: a Hamiltonian, e.g. the adjacency matrix of a graph 

algorithm: Schrödinger’s equation 
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Continuous time:
 
Analog Analogue of Grover [Farhi & Gutmann 98]
 

An unknown marked state v, and a known initial state u 

A Hamiltonian 

H = |u 〉〈u | + |v 〉〈v |
 
The algorithm:
 

∂
−i ħh 
∂ t 
ψ = Hψ . 

Start in u. At time 

t = 
π 

2 〈u , v 〉 
the state is v!
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Quantum walks
 

Input: a Hamiltonian, e.g., the adjacency matrix of a graph 

Algorithm: Schrödinger’s equation 

Mixing on the cycle [Ambainis et al., Aharonov et al.] 

Mixing and hitting on the hypercube [Moore, Russell; Kempe] 

Exponential speedup possible [Childs et al.] 

Element distinctness [Ambainis] 

Search in d dimensions [Ambainis, Kempe, Rivosh; Childs, Goldstone] 

Hidden nonlinear structures [Childs, Schulman, Vazirani] 

NAND trees [Farhi, Goldstone, Gutmann] 

Boolean formulas [Reichardt, Spalek; Ambainis et al.] 
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QUANTUM WALKS AND SCATTERING 881

FIGURE 15.12: The quantum and classical walks on the line. The classical walk gives a Gaussian distribu-
tion of width O(

1
t ), while the probability distribution |Ψ|2 of the quantum walk is roughly uniform over

the interval [−t , t ]. Here t = 100.

FIGURE 15.13: The probability distribution of a discrete-time quantum walk on the square lattice. Except
for a bright spot in the center, the probability is roughly uniform over a circle of radius t /

1
2. Here t = 100.

Quantum walks
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QUANTUM WALKS AND SCATTERING 881
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FIGURE 15.12: The quantum and classical walks on the line. The classical walk gives a Gaussian distribu-
tion of width O(

 
t ), while the probability distribution |Ψ|2 of the quantum walk is roughly uniform over

the interval [−t , t ]. Here t = 100.

FIGURE 15.13: The probability distribution of a discrete-time quantum walk on the square lattice. Except
for a bright spot in the center, the probability is roughly uniform over a circle of radius t /

 
2. Here t = 100.

Quantum walks
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NAND trees in motion 
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First-semester quantum algorithms
 

Hamiltonian for a free particle in Rn with zero potential: 

p 2 

h
2 ∇2 

H = = −ħ . 
2m 2m 

Equivalent to quantum walk on the n-dimensional lattice in the low-energy limit
 

What can we learn about the initial state, simply by running Schrödinger’s 
equation for a certain amount of time and measuring the position? 

Wednesday, January 18, 2012 



-1.5 -1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

1.5

 

Spherical shells
 

Suppose the initial state is concentrated on a spherical shell of unknown center 
and/or unknown radius 

Application: finding the center of symmetry of a spherically symmetric function 
in Rn 

Let the initial thickness of the shell be w0 ~ 1/τ 

Evolve for time t ~ w02τ, so the width of the state 
is roughly the radius of the sphere 

As in geometric diffraction [Fresnel, Poisson, Arago]                                             
we get a bright spot at the center 

Independent of the radius (up to a constant) 
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How bright? A singularity at the center
 

Density r away from the center: if r ≫ nw0 the probability density scales as 

2 −(n−1)
��ψ
�� ∼ r
 

so the probability density of the distance r is 

ρ(r ) ∼ 1 

the total probability we observe a point at r < ε is 

Pr[r < �] ∼ � 

if |ψ|2 were smooth, this would be exponentially small 

Pr[r < �] ∼ �n 

Wednesday, January 18, 2012 



7

FIG. 3: The exact probability density ρ(r) (red) and our
asymptotic expressions (23) (blue) and (17) (green) for n = 4,
τ = 40, w = 1, and w0 � 1/40.

D. Behavior near the origin

For small r, ρ(r) is essentially constant, so for small �
we observe a point with r < � with probability

P (r < �) � 2√
πw

exp

�
− 1

w2

�
� , (24)

In the next section we will use the fact that P (r < �) ∝ �
in our algorithm for finding the center of a sphere. More
generally, we can write P (r < �) =

� �
0 ρ(r) dr in terms of

the error function.
However, the expression (23) does not hold if r is too

small as a function of the other parameters. Our sta-
tionary phase approximation is equivalent to treating the
sphere as a paraboloid at each pole, by writing

cos θ ≈
n−1�

j=1

cos ξj ≈
n−1�

j=1

�
1−

ξ2j
2

�
≈ 1− 1

2

n−1�

j=1

ξ2j .

The multiplicative error in the second-order Taylor series
for cos ξ is 1 + O(ξ2). However, taking the product over
the n−1 coordinates at the cap raises this to 1+O(nξ2).
Thus the width of the cap that contributes significantly
to the integral must obey ξ � n−1/2 for our approxima-
tion to hold. Since the width of the Gaussian Sj,± in (20)
is (τr)−1/2 ∼ (w0/r)1/2, this requires that

r � n

τ
∼ nw0 .

To put this differently, if our ambition is to observe points
a distance r < � away from the origin, we need the initial
thickness of the shell to be

w0 � �

n
.

This fits with the fact that the asymptotic formulas (11),
(16) for the Bessel function Iν(z) in the real and complex-
valued case hold when z � ν2 and y � ν respectively.

Ultimately, the probability density |ψ|2 at the origin
must take some finite value, so that ρ(0) = 0. We can
consider its behavior when r � nw0 ∼ n/τ so |br| � n,
using the power series of the modified Bessel function:

Iν(2z) = z
ν

∞�

j=0

z2j

Γ(ν + 1 + j)Γ(j + 1)
.

Thus to leading order,

In/2−1(2br) =
(br)n/2−1

Γ(n/2)
,

and we can approximate (13) as

|ψ(r;w)|2 � 2
√
π

Cnw0w
2
exp

�
−1 + r2

w2

�
|b|n−2

Γ(n/2)2

� 2Cn
√
π

(2πw)nwn−1
0

exp

�
−1 + r2

w2

�
. (25)

Note that the factors of rn−2 cancel out. Thus the peak
in the probability density at the origin grows as w0 → 0,
but is finite for any given w0.

IV. QUANTUM ALGORITHMIC
APPLICATIONS AND CLASSICAL ANALOGS

We have shown that physical evolution of a certain
class of spherically symmetric states concentrates the
probability near the center of the sphere. Any system
able to simulate this quantum evolution to sufficient pre-
cision will also be able to likewise concentrate the prob-
ability.

Scaling arguments tell us that a spherical shell at ra-
dius R behaves instead as

ρ(r;R,w) � 2

π1/2w
exp

�
−R2 + r2

w2

�
cosh

2Rr

w2
. (26)

1. Algorithm: Approximate central point of spherically
symmetric state in this family

Given w0, R, and quantum state in this family:

1. evolve state to time t = 2R2w2
0 − w4

0

2. measure position

This gives us a reasonable probability of getting close
to the center with one sample. For small �, with P > �,
r � 2� exp(−R2/w2)/

√
πw2.

Moiré and Bessel
 

rho Sampling Density
 

r 

0.5 1 1.5 2.
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Combining multiple samples
 

Each sample has r < ε with probability 

Pr[r < �] ∼ � 

Toy model: each point is uniformly random on a sphere of radius r, 
where r is uniformly random in [0,1] 

How can we use s independent samples to obtain an estimate of the center 
with a very small ε? And how many samples does this take? 

The mean (or the median) gives 

s ∼ �−2 log n 

which isn’t any better than taking s samples from the original shell!
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Maximum likelihood 

Our estimate will be one of the samples 

With s samples, the closest one probably is at distance 

but how do we know which one is the closest? 

� ∼ 1/s 
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Maximum likelihood
 

Since |ψ|2 ~ r –(n-1), if xi were the center, the probability that we see the other 
samples is proportional to ��� ��−(n−1)

L = xi − x j 

j �=i 

We renormalize away the “self-likelihood” of xi 

Maximizing L is equivalent to minimizing the product of the distances 

xi − x j

��� ��
 
j �=i 

Theorem: with probability bounded above zero, the xi minimizing this product is 
the closest one 

Gives error ε with just s ∼ 1/� samples 
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Iterating to estimate the center of a spherically 
symmetric function 

In one round of s samples, we get an estimate with error ε ~ 1/s 

Create a uniform superposition in a ball around that estimate, sample in that ball 
to get a new estimate 

But this ball has to have radius n1/2ε so the sampled shell has a large solid angle 

Optimum scheme uses en1/2 samples in each round, so that the ball’s radius  
decreases by a factor of e at each step 

Total number of samples over all log ε–1 rounds is then 

s ∼ n 1/2 log �−1 

which is better than s ~ 1/ε if ε ≪ n-1/2 

� 
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Yi-Kai Liu’s algorithm
 

Apply the curvelet transform to the sphere 

Gives an approximate vector normal to a random point on the surface 

One measurement: choose a random point along that vector 

Two measurements: find intersection between two such vectors 

Estimates the center within error 

� ∼ (nw0)1/2 

with just two queries 
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to be the group of rotations about some point. One diffi-
culty is we are not given a function on E(n), but only on
Rn, which E(n) acts on. A simple Fourier transform gives
only the representations associated with the translation
subgroup, and there is no more information to extract.
This is not the only transform open to us, of course.
We can trade off the translation information for other
information. Yi-Kai Liu has shown that the quantum
curvelet transform lets one find the center of a large class
of spherically symmetric functions with a constant num-
ber of queries, and that this generalizes to the discrete
case with the same asymptotics. The present work an-
swers this question in a rather different way. Rather than
use a series of quantum gates as a circuit to transform
the state to a basis that extracts algebraic information
about the problem (lines given as a point on them and
a direction, combined to locate the intersection), we use
the geometry of the state and let Schrödinger’s equation
do the work for us.
This process of spherical symmetry in initial conditions

causing a peak near the center should also remind one of
the phenomenon of Poisson’s spot (also known as Arago’s
spot).4 A light source is blocked by an opaque circular
disk, and the shadow projected onto a screen. At the
center of the circular shadow is a bright spot. This is
due to constructive interference; by Huygens’s principle
we can think of each spot on the edge of the disk being
a point source of light. At the center, the light travels
an equal distance, so has the same phase difference from
each point along the edge.
Poisson’s analysis was intended to demonstrate the ab-

surdity of a wave theory of light. Arago’s experimental
verification showed that Poisson’s sense of the absurd is
not a reliable guide to the workings of the universe.

V. CURVES IN TWO DIMENSIONS

Arago’s spot provokes the question of what happens
when the shadow mask has less symmetry than a circle.
Arago’s measurements have been extended to ellipses, or
nearly equivalently, tilted circular disks, and other fairly
simple geometric shapes [4, 5]. The bright spot of the
circular disk becomes a bright curve of the evolute of the
boundary of the shadow mask. The evolute is the set
of all “centers of curvature” of a given curve. Indeed,
the circular disk is a degenerate case, where the evolute
reduces to the central point.
We can readily characterize the results by considering

the interference properties of the light diffracted around
the edge. The result at any point should be an integral

4 In accordance with Stigler’s law of eponymy, earlier observations
were reported, including by Joseph-Nicolas Delisles in 1715, and
Giacomo F. Maraldi in 1723, about 100 years before Poisson’s
derivation, or Arago’s subsequent observational confirmation.
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FIG. 4: An ellipse, its evolute, and the interference pattern it
generates, concentrated on the evolute

of contributions from such diffractions around the edge.
Using the method of stationary phase as a heuristic to
guide our analysis, we see that at a generic interior point
the interference should be mostly destructive. This oc-
curs locally from most places along the edge, so long as
the path length differences vary. However we expect local
constructive interference from a few points, where there
is a point on the edge such that the path length is station-
ary with respect to movements along the edge. To gain
an understanding of the wave function’s behavior we need
analyze only these few points. Each such point generat-
ing a stationary path length can also be charactercterized
as being a minimum or maximum path length. This in
turn implies that the line connecting the point on the
edge to the generic interior point being considered must
be perpindicular to the edge. Turning this around, for a
given point on the edge, the points in the interior to which
it greatly contributes are the ones that lie on the perpen-
dicular to the edge at that point. Different points along
this line have lesser or greater contributions, peaking at
the point that such that the boundary locally resembles
a circular boundary with the same radius of curvature R.
This is the “center of curvature” of the given location on
the boundary curve. The collection of all of these points
is the evolute of the curve.

As an example, the evolute of an ellipse is approxi-
mately shaped like a four-pointed star. A point can have
up to four stationary distances to the ellipse, with two
being maxima and two minima. This occurs inside the
evolute. For a point outside the evolute two stationary
points exist, one maximum and one minimum. The evo-
lute itself has three fixed points – approaching from the

12

FIG. 5: Each point on a curve has a circle (the “osculating
circle”) that will “fit snugly”. The center is the point on the
evolute generated by that point on the curve.

interior, two fixed points have merged producing one of

higher order, and hence stronger concentration. Simi-

larly, the cusps, with two fixed points have merged three

of the four points creating another higher-order fixed

point.

Although we produce similar patterns to diffraction
around a connected opaque shape, our setup is more anal-

ogous to diffraction through a curved slot on a screen,

at various widths. However, because only the bound-

aries produce strong effects, the analysis essentially car-

ries through similarly. Physically we can understand this

with Babinet’s principle of complementary screens. Con-

sider a screen with our curve as its edge. By Babinet’s

principle the complement of this screen produces a sim-

ilar diffraction problem. Shrinking one slightly and en-

larging the other will only slightly change the size of each

diffraction pattern. Combining them gives a screen with

a curved slot. This will give a diffraction pattern that is

a combination of the two, with interference effects.
In the case of shadow masks and optical diffrac-

tion, this can be analyzed fairly rigorously with Kirchoff
diffraction theory [12], though care must be taken that

all the assumed limits are applicable. This would leave

us with a frequency-dependent reduced wave equation in

the plane perpendicular to propagation.

Rather than examining the steady state behavior of

a beam satisfying such a reduced wave equation ∇2ψ +

k2(ω)ψ = 0, we directly work in a 2-dimensional space,

and examine the evolution of a wave function initially lo-

calized near a plane curve. We attain qualitatively sim-

ilar behavior to these diffraction effects with a different
kernel, evolving under Schrödinger’s equation. After a

given amount of time, the probability density is concen-

trated on the evolute of the original curve. Given an

initial concentration to a width w0 around a given curve,

we have calculated the scaling behavior of the width and

probability density of the brightness along the evolute

(w1/3
0 and w−1/3

0 , respectively), and the width and prob-

ability density at cusps of the evolute (w1/2
0 and w−1/2

0 ,

respectively), where w0 is the initial width of the wave

function around the starting curve.

We consider a curve with a Gaussian intensity profile.

Again, rather than directly integrating across the width

of the curve, we instead convolve a zero-width curve with

a Gaussian kernel of a given width, which gives us the

profile we want. Specializing the kernel of the previous

sections to n = 2 gives

ϕ0(r;w0) =
1

w0π1/2
exp

�
− r2

2w2
0

�
.

For example, the unnormalized wave function for a uni-

form line of width w0 is constructed by:

Ψ(x, y) =

�
dx0 ϕ0(x, y;w0)

=
1

w0π1/2

�
dx0 exp

�
− (x− x0)

2
+ y2

2w0

�

=
1

w0π1/2
N2(w0) exp

�
− y2

2w0

�
.

To represent a curve other than the line y0 = 0, we

use three functions x(s), y(s), and a density ρ(s). We

parameterize all three with a common variable s which is

integrated over to produce the final state. This variable

s can locally be considered proportional to the arc length

of the curve. We would like to construct a wave function

from this that goes to zero density off the curve, and a

density proportional to ρ(s) on the curve.

Evolving our state is handled by evolving the kernel

inside the integral.

ϕτ (r;w0) =
1

(πw2)1/2
exp

�
− (1 + iτ)r2

2w2

�
,

with τ = t/w2
0, and a final width w2

= w2
0(1 + τ2). By

linearity, the wave function representing the time-evolved

curve is just the integral of this kernel around the curve.

We have so far not handled the overall normalization

factor. We want to maintain a constant probability inte-

grated over the plane. Although it looks like the the de-

pendence on w would be accounted for in that the kernel

has a constant squared integral, this will not work as the

integral along the curve is also scaled by w0. As a result,

we must also take N2(w0) ∝ w−1/2
0 . Strictly speaking,

this scaling is exact only for the limit as w0 → 0, but

this is precisely the limit we are interested in.

The exponential drop-off in amplitude taken from the

original kernel remains, but with a growing length scale

w instead of the fixed w0. In order to observe interesting

interference effects, we consider the case where we covary
τ and w0 to keep w fixed at a length scale correspond-

ing to the plane curve. This results in finer and finer

concentration along the evolute as the scaled times τ in-

creases, with w0 decreasing to compensate. (Note that

for a fixed w, as τ increases, t decreases. As the initial

width w0, the decomposition of the state into plane waves

has more support on higher-frequency modes, requiring

less unscaled time t to operate.)

Other initial shapes? The evolute
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to be the group of rotations about some point. One diffi-
culty is we are not given a function on E(n), but only on
Rn, which E(n) acts on. A simple Fourier transform gives
only the representations associated with the translation
subgroup, and there is no more information to extract.
This is not the only transform open to us, of course.
We can trade off the translation information for other
information. Yi-Kai Liu has shown that the quantum
curvelet transform lets one find the center of a large class
of spherically symmetric functions with a constant num-
ber of queries, and that this generalizes to the discrete
case with the same asymptotics. The present work an-
swers this question in a rather different way. Rather than
use a series of quantum gates as a circuit to transform
the state to a basis that extracts algebraic information
about the problem (lines given as a point on them and
a direction, combined to locate the intersection), we use
the geometry of the state and let Schrödinger’s equation
do the work for us.
This process of spherical symmetry in initial conditions

causing a peak near the center should also remind one of
the phenomenon of Poisson’s spot (also known as Arago’s
spot).4 A light source is blocked by an opaque circular
disk, and the shadow projected onto a screen. At the
center of the circular shadow is a bright spot. This is
due to constructive interference; by Huygens’s principle
we can think of each spot on the edge of the disk being
a point source of light. At the center, the light travels
an equal distance, so has the same phase difference from
each point along the edge.
Poisson’s analysis was intended to demonstrate the ab-

surdity of a wave theory of light. Arago’s experimental
verification showed that Poisson’s sense of the absurd is
not a reliable guide to the workings of the universe.

V. CURVES IN TWO DIMENSIONS

Arago’s spot provokes the question of what happens
when the shadow mask has less symmetry than a circle.
Arago’s measurements have been extended to ellipses, or
nearly equivalently, tilted circular disks, and other fairly
simple geometric shapes [4, 5]. The bright spot of the
circular disk becomes a bright curve of the evolute of the
boundary of the shadow mask. The evolute is the set
of all “centers of curvature” of a given curve. Indeed,
the circular disk is a degenerate case, where the evolute
reduces to the central point.
We can readily characterize the results by considering

the interference properties of the light diffracted around
the edge. The result at any point should be an integral

4 In accordance with Stigler’s law of eponymy, earlier observations
were reported, including by Joseph-Nicolas Delisles in 1715, and
Giacomo F. Maraldi in 1723, about 100 years before Poisson’s
derivation, or Arago’s subsequent observational confirmation.
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FIG. 4: An ellipse, its evolute, and the interference pattern it
generates, concentrated on the evolute

of contributions from such diffractions around the edge.
Using the method of stationary phase as a heuristic to
guide our analysis, we see that at a generic interior point
the interference should be mostly destructive. This oc-
curs locally from most places along the edge, so long as
the path length differences vary. However we expect local
constructive interference from a few points, where there
is a point on the edge such that the path length is station-
ary with respect to movements along the edge. To gain
an understanding of the wave function’s behavior we need
analyze only these few points. Each such point generat-
ing a stationary path length can also be charactercterized
as being a minimum or maximum path length. This in
turn implies that the line connecting the point on the
edge to the generic interior point being considered must
be perpindicular to the edge. Turning this around, for a
given point on the edge, the points in the interior to which
it greatly contributes are the ones that lie on the perpen-
dicular to the edge at that point. Different points along
this line have lesser or greater contributions, peaking at
the point that such that the boundary locally resembles
a circular boundary with the same radius of curvature R.
This is the “center of curvature” of the given location on
the boundary curve. The collection of all of these points
is the evolute of the curve.

As an example, the evolute of an ellipse is approxi-
mately shaped like a four-pointed star. A point can have
up to four stationary distances to the ellipse, with two
being maxima and two minima. This occurs inside the
evolute. For a point outside the evolute two stationary
points exist, one maximum and one minimum. The evo-
lute itself has three fixed points – approaching from the

Scaling of the probability density
 

O(1) τ1/3 

τ1/2 

τ−1/3 
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Computation everywhere 

Even very simple physical processes can solve interesting problems,                 
if they take place in unusual settings 

The input to an algorithm can be given in the form of a Hamiltonian, 
a unitary operator, or an initial state 

What other serendipities are still out there? 
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