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The WWW 
is a big place 

www.worldwidewebsize.com 



The WWW 
is a big place 
… 
and is hard  
to search 

"The certitude that some shelf in 
some hexagon held precious 
books and that these precious 
books were inaccessible seemed 
almost intolerable"  
J.L. Borges in The library of Babel 

www.worldwidewebsize.com 



Google to the rescue: Brin & Page, 1998 

Google scholar: >8500 citations 



What does Google do? 



Google calculates an eigenvector 

𝐺𝜋 = 𝜋 



𝜋 is the  

stationary state 

of a surfer hopping 

randomly on the  

web graph 

 

the PageRank vector 

 

𝜋𝑖 = rank of i’th page:  

the relative time spent there by the random surfer 

Google calculates an eigenvector 

𝐺𝜋 = 𝜋 



- G is a big matrix: dimension = number of webpages n.  

    Updated about once a month 
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- G is a big matrix: dimension = number of webpages n.  

    Updated about once a month 

 

- G is computed from the directed adjacency matrix of the webgraph 

+ random hopping to avoid traps from nodes with no outgoing links: 

𝐺 = 𝛼𝑆 +
1

𝑛
1 − 𝛼 𝐸 

 

 

 

- G is a “primitive” matrix (𝐺𝑖𝑗 ≥ 0, ∃𝑘 > 0 s.t. (𝐺𝑖𝑗)
𝑘> 0, ∀𝑖, 𝑗):  

Perron-Frobenius theorem  𝜋 is unique, and a probability vector:  

𝜋 encodes the relative ranking of the nodes of the webgraph 

Google calculates an eigenvector 

𝐺𝜋 = 𝜋 

matrix of all 1’s 
hyperlink matrix of webgraph,  

normalized columns; reflects the  

directed connectivity structure of the webgraph  

“teleport” parameter: 0.85 
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This talk 

Can (adiabatic) quantum computation help to compute 𝜋 ? 

PageRank can be: 

 

prepared with exp speedup 

 

read out with poly speedup 

for top-ranked log 𝑛  pages 

 

Why? 

gap of certain Hamiltonian  

having PageRank as ground  

state scales as 

 1/poly log 𝑛  

 

numerical evidence: 

 arXiv:1109.6546 



Classical PageRank computation 

The PageRank is the principal eigenvector of G; 
unique eigenvector with maximal eigenvalue 1 

𝐺𝜋 = 𝜋 

How do you get the PageRank, classically? 



Classical PageRank computation 

 
Power method: G is a Markov (stochastic) matrix, so 

Guaranteed to converge for any initial probability vector. 

 

Scaling? 
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Classical PageRank computation 

 
Power method: G is a Markov (stochastic) matrix, so 
 

Guaranteed to converge for any initial probability vector. 

 

Scaling? 

time ~𝑠𝑛
log (𝜖)

|log (𝛼)|
 

𝜖 = desired accuracy 
s = sparsity of the adjacency (or hyperlink) matrix. Typically s~10 

𝐺 = 𝛼𝑆 +
1

𝑛
1 − 𝛼 𝐸 



Classical PageRank computation 

Markov Chain Monte Carlo: 

 

Uses direct simulation of rapidly mixing random walks to 

estimate the PageRank at each node.  

 

   time ~ 𝑂[𝑛 log (𝑛)] 
 

 
 

[Modulus of the second eigenvalue of G is upper-bounded by α 

 G is a gapped stochastic matrix 

 walk converges in time 𝑂[log 𝑛 ] per node] 



Classical computation is already efficient; 

why do we need quantum? 

time ~𝑠𝑛
log (𝜖)

log (𝛼)
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Classical computation is already efficient; 

why do we need quantum? 

time ~𝑠𝑛
log (𝜖)

log (𝛼)
 

power method: 
Markov chain Monte Carlo: 

𝑛 updating PageRank already takes 

weeks; will only get worse. 

 

With q-adiabatic algo can 

prepare PageRank in time  

𝑂[poly log 𝑛 ] 
Application: run successive 

PageRanks and compare in time 

𝑂(1); use to decide whether to 

run classical update 

𝑂[𝑛 log (𝑛)] 



Quantum approach 

Adiabatic quantum computation of the PageRank vector 
 
 
 
 
 
 
 
 
 
 
 
 



Adiabatic quantum computation 

ℎ 𝑠 𝑡 = 1 − 𝑠 𝑡 ℎ0 + 𝑠(𝑡)ℎ𝑃 

initial Hamiltonian problem Hamiltonian 



The q-algorithm for PageRank 

Uniform superposition over the complete graph of n nodes. 

 

This requires log 𝑛  qubits so assume 𝑛 is power of 2. 

𝑡 = 0: prepare ground state of the initial Hamiltonian 



The q-algorithm for PageRank 

The problem Hamiltonian is   ℎ𝑝 = 𝐼 − 𝐺 †(𝐼 − 𝐺) 

𝑡 = 𝑇: evolve to ground state of the final Hamiltonian 



The q-algorithm for PageRank 

The problem Hamiltonian is   ℎ𝑝 = 𝐼 − 𝐺 †(𝐼 − 𝐺) 

𝑡 = 𝑇: evolve to ground state of the final Hamiltonian 

- Positive semidefinite, with 0 the unique min eigenvalue 
 

- If 𝐺𝜋 = 𝜋 then   |𝜋 = 𝜋/ 𝜋 2 

is corresponding ground state of ℎ𝑝 

Note for experts: since G is not reversible 
(doesn’t satisfy detailed balance) we 
cannot apply the standard “Szegedy trick” 
of quantum random walks (mapping to a 
discriminant matrix) 



The q-algorithm for PageRank 

𝑡 = 𝑇: evolve to ground state of the final Hamiltonian 

is corresponding ground state of ℎ𝑝 

Yet the amplitudes of the final ground state respect the same 
ranking order as the PageRank, 
and amplify higher ranked pages 

- Positive semidefinite, with 0 the unique min eigenvalue 
 

- If 𝐺𝜋 = 𝜋 then   |𝜋 = 𝜋/ 𝜋 2, |𝜋 𝑖 ≠ 𝜋𝑖 

The problem Hamiltonian is   ℎ𝑝 = 𝐼 − 𝐺 †(𝐼 − 𝐺) 



Efficiency of the q-algorithm 

 
According to the adiabatic theorem, to get 

adiabatic error 𝜀 ≔ 1 − 𝑓2, fidelity 𝑓 ≔ | 𝜓 𝑇 |𝜋 | 

actual final state desired ground state 

for                 ℎ 𝑠 𝑡 = 1 − 𝑠 𝑡 ℎ0 + 𝑠(𝑡)ℎ𝑃 



Efficiency of the q-algorithm 

 
According to the adiabatic theorem, to get 

adiabatic error 𝜀 ≔ 1 − 𝑓2, fidelity 𝑓 ≔ | 𝜓 𝑇 |𝜋 | 

actual final state desired ground state 

for                 ℎ 𝑠 𝑡 = 1 − 𝑠 𝑡 ℎ0 + 𝑠(𝑡)ℎ𝑃 

need 𝑇~poly
1

min𝑠∈[0,1] (gap)
,max𝑠∈[0,1]

𝑑ℎ

𝑑𝑠
,
1

𝜀
 

- not necessarily min gap −2: can have -1 (best case) or -3 (worst case) 

- scaling of numerator can be important; needs to be checked 

DAL, A. Rezakhani, and A. Hamma, J. Math. Phys. (2009) 
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We tested the algorithm on random webgraph models,  
sparse, small-world, scale-free (power law degree distribution): 
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Testing the q-algo on webgraph models 
We tested the algorithm on random webgraph models,  
sparse, small-world, scale-free (power law degree distribution): 

 
- preferential attachment model  
 links are added at random with a bias for high-degree nodes 
 drawback: requires global knowledge of graph 
      Degree distribution: 𝑁(𝑑) ∝ 𝑑−3 
  
- copy-model 

         - start from a small fixed initial graph of constant out-degree 

         - each time step:  

    - choose pre-existing “copying vertex” uniformly at random  

    - Probability 1 − p: For each neighbor of the copying 

 vertex, add a link from a new added vertex to that neighbor  

    -  Probability p: add link from newly added vertex to uniformly random chosen one  

 requires only local knowledge of graph; has tuning parameter p 

Degree distribution: 𝑁 𝑑 ∝ 𝑑(2−𝑝)/(1−𝑝) 

 



Efficiency of the q-algorithm 

ave. min gap scaling: 

[Note: we computed same for generic 

sparse random matrices and found gap 

~1/poly 𝑛  instead] 

𝑇~poly
1

min (gap)
,max𝑠∈[0,1]

𝑑ℎ

𝑑𝑠
,
1

𝜀
 

numerical diagonalization 



Efficiency of the q-algorithm 

run Schrodinger equation  

with different 𝑇: 
 

 𝑇~𝜀−2 

𝑑ℎ

𝑑𝑠
= 

preferential attachment, n=16, 1000 graphs 

𝑇~poly
1

min (gap)
,max𝑠∈[0,1]

𝑑ℎ

𝑑𝑠
,
1

𝜀
 



Efficiency of the q-algorithm 

𝑇~𝜀−2 

𝑑ℎ

𝑑𝑠
=poly(loglog𝑛) 

δ~1/poly(log𝑛) 

& 

& 

checked and confirmed using solution of the full Schrodinger equation, for 𝑏 = 3: 

actual error always less than 𝜀 

𝑇~poly
1

min (gap)
,max𝑠∈[0,1]

𝑑ℎ

𝑑𝑠
,
1

𝜀
 small integer >0 



• Problem 1: The Google matrix G is a full matrix... 
  ℎ[𝑠(𝑡)] requires many-body interactions... 
 

So is this really an efficient q-algorithm? 



• Problem 1: The Google matrix G is a full matrix... 
  ℎ[𝑠(𝑡)] requires many-body interactions... 
 
• Can be reduced to 1&2 qubit interactions by using one qubit 

per node:  
    go from log (𝑛) qubits to 𝑛 qubits (unary representation), i.e., 

    map to 𝑛-dim. “single particle excitation” subspace of 2𝑛-dim  
    Hilbert space: 
     

So is this really an efficient q-algorithm? 

matrix elements of ℎ 𝑠 𝑡 = 1 − 𝑠 𝑡 ℎ0 + 𝑠(𝑡)ℎ𝑃 

probability of 

finding excitation 

at site i gives 

PageRank of page i 

𝐻 𝑠  (in 1-excitation subspace) and ℎ(𝑠) have same spectrum  same 𝑇 scaling 



Measuring the PageRank 

• Problem 2: Once the ground-state has been prepared one 
needs to measure the site occupation probabilities (𝜋𝑖)

2/ 𝜋 2 

 
 To recover the complete length-n PageRank vector takes 
 at least n measurements (Chernoff bound

∗
) 

   back to the classical performance  
 

• Same problem as in the quantum algorithm for solving linear 

equations [Harrow, Hassidim, Lloyd, PRL (2009)]; 

 actually our algorithm is an instance of solving linear equations, 

 but  assumes a lot more structure 

 

 
∗
To estimate ith prob. amplitude with additive error 𝑒𝑖 need number of measurements ~ 1/poly(𝑒𝑖)  



Measuring the PageRank 

• Problem 2: Once the ground-state has been prepared one 
needs to measure the site occupation probabilities (𝜋𝑖)

2/ 𝜋 2 

 
 To recover the complete length-n PageRank vector takes 
 at least n measurements (Chernoff bound

∗
) 

   back to the classical performance   
 
• However: one is typically interested only in the top ranked 

pages 

• For these pages we nevertheless obtain (again using 

the Chernoff bound) a polynomial speed-up for estimating the 
ranks of the top 𝐥𝐨𝐠 𝒏  pages  

• This is because of the amplification of top PageRank entries 
and power-law distribution of the PageRank entries 



Summary of results and applications 

• Can map adiabatic PageRank algo to Hamiltonians with 1&2 
body interactions, with one qubit per node 
 

• Polynomial speed-up for top-log 𝑛  set of nodes 
  
• Exponential speedup in preparation of PageRank 



Summary of results and applications 

• Can map adiabatic PageRank algo to Hamiltonians with 1&2 
body interactions, with one qubit per node 
 

• Polynomial speed-up for top-log 𝑛  set of nodes 
  
• Exponential speedup in preparation of PageRank allows for 

an efficient decision procedure about updating of the 
classical PageRank: 
• Prepare pre-perturbation PageRank state |𝜋 :     𝑇~𝑂[poly log 𝑛 ] 

• Prepare post-perturbation PageRank state |𝜋′ :   𝑇′~𝑂[poly log 𝑛′ ] 

• Compute | 𝜋 𝜋′ | using the SWAP test:                   ~𝑂(1) 
 Decide whether update needed 

 
 



Conclusions 

• Information retrieval provides new set of problems for 
Quantum Computation 

• Given the existence of efficient classical algorithms it is non-
trivial that QC can provide some form of speedup 

• The humongous size of the WWW is an important motivation 
to look for such a speedup 

• Showed tasks for which adiabatic quantum PageRank 
provides a speedup with respect to classical algorithms 
 



Conclusions 

• Information retrieval provides new set of problems for 
Quantum Computation 

• Given the existence of efficient classical algorithms it is non-
trivial that QC can provide some form of speedup 

• The humongous size of the WWW is an important motivation 
to look for such a speedup 

• Showed tasks for which adiabatic quantum PageRank 
provides a speedup with respect to classical algorithms 
 

• Why does it work? Sparsity alone seems insufficient.  
• Other key features of the webgraph are 

• small-world (each node reachable from any other is 
log (𝑛) steps) 

• degree distribution of nodes is power-law 
Which of these is necessary/sufficient? 
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