
Quantum approach to information retrieval:
Adiabatic quantum PageRank algorithm

arXiv:1109.6546

with Silvano Garnerone and Paolo Zanardi

First NASA Quantum Future Technologies Conference

$:

The WWW
is a big place

www.worldwidewebsize.com

The WWW
is a big place
…
and is hard
to search

"The certitude that some shelf in
some hexagon held precious
books and that these precious
books were inaccessible seemed
almost intolerable"
J.L. Borges in The library of Babel

www.worldwidewebsize.com

Google to the rescue: Brin & Page, 1998

Google scholar: >8500 citations

What does Google do?

Google calculates an eigenvector

𝐺𝜋 = 𝜋

𝜋 is the

stationary state

of a surfer hopping

randomly on the

web graph

the PageRank vector

𝜋𝑖 = rank of i’th page:

the relative time spent there by the random surfer

Google calculates an eigenvector

𝐺𝜋 = 𝜋

- G is a big matrix: dimension = number of webpages n.

 Updated about once a month

Google calculates an eigenvector

𝐺𝜋 = 𝜋

- G is a big matrix: dimension = number of webpages n.

 Updated about once a month

- G is computed from the directed adjacency matrix of the webgraph

𝐺 = 𝛼𝑆 +
1

𝑛
1 − 𝛼 𝐸

Google calculates an eigenvector

𝐺𝜋 = 𝜋

hyperlink matrix of webgraph,

normalized columns; reflects the

directed connectivity structure of the webgraph

- G is a big matrix: dimension = number of webpages n.

 Updated about once a month

- G is computed from the directed adjacency matrix of the webgraph

+ random hopping to avoid traps from nodes with no outgoing links:

𝐺 = 𝛼𝑆 +
1

𝑛
1 − 𝛼 𝐸

Google calculates an eigenvector

𝐺𝜋 = 𝜋

matrix of all 1’s
hyperlink matrix of webgraph,

normalized columns; reflects the

directed connectivity structure of the webgraph

“teleport” parameter: 0.85

- G is a big matrix: dimension = number of webpages n.

 Updated about once a month

- G is computed from the directed adjacency matrix of the webgraph

+ random hopping to avoid traps from nodes with no outgoing links:

𝐺 = 𝛼𝑆 +
1

𝑛
1 − 𝛼 𝐸

- G is a “primitive” matrix (𝐺𝑖𝑗 ≥ 0, ∃𝑘 > 0 s.t. (𝐺𝑖𝑗)
𝑘> 0, ∀𝑖, 𝑗):

Perron-Frobenius theorem  𝜋 is unique, and a probability vector:

𝜋 encodes the relative ranking of the nodes of the webgraph

Google calculates an eigenvector

𝐺𝜋 = 𝜋

matrix of all 1’s
hyperlink matrix of webgraph,

normalized columns; reflects the

directed connectivity structure of the webgraph

“teleport” parameter: 0.85

This talk

Can (adiabatic) quantum computation help to compute 𝜋 ?

This talk

Can (adiabatic) quantum computation help to compute 𝜋 ?

PageRank can be:

prepared with exp speedup

read out with poly speedup

for top-ranked log 𝑛 pages

Why?

gap of certain Hamiltonian

having PageRank as ground

state scales as

 1/poly log 𝑛

numerical evidence:

 arXiv:1109.6546

Classical PageRank computation

The PageRank is the principal eigenvector of G;
unique eigenvector with maximal eigenvalue 1

𝐺𝜋 = 𝜋

How do you get the PageRank, classically?

Classical PageRank computation

Power method: G is a Markov (stochastic) matrix, so

Guaranteed to converge for any initial probability vector.

Scaling?

𝐺 = 𝛼𝑆 +
1

𝑛
1 − 𝛼 𝐸

Classical PageRank computation

Power method: G is a Markov (stochastic) matrix, so

Guaranteed to converge for any initial probability vector.

Scaling?

time ~𝑠𝑛
log (𝜖)

|log (𝛼)|

𝜖 = desired accuracy
s = sparsity of the adjacency (or hyperlink) matrix. Typically s~10

𝐺 = 𝛼𝑆 +
1

𝑛
1 − 𝛼 𝐸

Classical PageRank computation

Markov Chain Monte Carlo:

Uses direct simulation of rapidly mixing random walks to

estimate the PageRank at each node.

 time ~ 𝑂[𝑛 log (𝑛)]

[Modulus of the second eigenvalue of G is upper-bounded by α

 G is a gapped stochastic matrix

 walk converges in time 𝑂[log 𝑛] per node]

Classical computation is already efficient;

why do we need quantum?

time ~𝑠𝑛
log (𝜖)

log (𝛼)

power method:
Markov chain Monte Carlo:

𝑂[𝑛 log (𝑛)]

Classical computation is already efficient;

why do we need quantum?

time ~𝑠𝑛
log (𝜖)

log (𝛼)

power method:
Markov chain Monte Carlo:

𝑛 updating PageRank already takes

weeks; will only get worse.

𝑂[𝑛 log (𝑛)]

Classical computation is already efficient;

why do we need quantum?

time ~𝑠𝑛
log (𝜖)

log (𝛼)

power method:
Markov chain Monte Carlo:

𝑛 updating PageRank already takes

weeks; will only get worse.

With q-adiabatic algo can

prepare PageRank in time

𝑂[poly log 𝑛]

𝑂[𝑛 log (𝑛)]

Classical computation is already efficient;

why do we need quantum?

time ~𝑠𝑛
log (𝜖)

log (𝛼)

power method:
Markov chain Monte Carlo:

𝑛 updating PageRank already takes

weeks; will only get worse.

With q-adiabatic algo can

prepare PageRank in time

𝑂[poly log 𝑛]
Application: run successive

PageRanks and compare in time

𝑂(1); use to decide whether to

run classical update

𝑂[𝑛 log (𝑛)]

Quantum approach

Adiabatic quantum computation of the PageRank vector

Adiabatic quantum computation

ℎ 𝑠 𝑡 = 1 − 𝑠 𝑡 ℎ0 + 𝑠(𝑡)ℎ𝑃

initial Hamiltonian problem Hamiltonian

The q-algorithm for PageRank

Uniform superposition over the complete graph of n nodes.

This requires log 𝑛 qubits so assume 𝑛 is power of 2.

𝑡 = 0: prepare ground state of the initial Hamiltonian

The q-algorithm for PageRank

The problem Hamiltonian is ℎ𝑝 = 𝐼 − 𝐺 †(𝐼 − 𝐺)

𝑡 = 𝑇: evolve to ground state of the final Hamiltonian

The q-algorithm for PageRank

The problem Hamiltonian is ℎ𝑝 = 𝐼 − 𝐺 †(𝐼 − 𝐺)

𝑡 = 𝑇: evolve to ground state of the final Hamiltonian

- Positive semidefinite, with 0 the unique min eigenvalue

- If 𝐺𝜋 = 𝜋 then |𝜋 = 𝜋/ 𝜋 2

is corresponding ground state of ℎ𝑝

Note for experts: since G is not reversible
(doesn’t satisfy detailed balance) we
cannot apply the standard “Szegedy trick”
of quantum random walks (mapping to a
discriminant matrix)

The q-algorithm for PageRank

𝑡 = 𝑇: evolve to ground state of the final Hamiltonian

is corresponding ground state of ℎ𝑝

Yet the amplitudes of the final ground state respect the same
ranking order as the PageRank,
and amplify higher ranked pages

- Positive semidefinite, with 0 the unique min eigenvalue

- If 𝐺𝜋 = 𝜋 then |𝜋 = 𝜋/ 𝜋 2, |𝜋 𝑖 ≠ 𝜋𝑖

The problem Hamiltonian is ℎ𝑝 = 𝐼 − 𝐺 †(𝐼 − 𝐺)

Efficiency of the q-algorithm

According to the adiabatic theorem, to get

adiabatic error 𝜀 ≔ 1 − 𝑓2, fidelity 𝑓 ≔ | 𝜓 𝑇 |𝜋 |

actual final state desired ground state

for ℎ 𝑠 𝑡 = 1 − 𝑠 𝑡 ℎ0 + 𝑠(𝑡)ℎ𝑃

Efficiency of the q-algorithm

According to the adiabatic theorem, to get

adiabatic error 𝜀 ≔ 1 − 𝑓2, fidelity 𝑓 ≔ | 𝜓 𝑇 |𝜋 |

actual final state desired ground state

for ℎ 𝑠 𝑡 = 1 − 𝑠 𝑡 ℎ0 + 𝑠(𝑡)ℎ𝑃

need 𝑇~poly
1

min𝑠∈[0,1] (gap)
,max𝑠∈[0,1]

𝑑ℎ

𝑑𝑠
,
1

𝜀

- not necessarily min gap −2: can have -1 (best case) or -3 (worst case)

- scaling of numerator can be important; needs to be checked

DAL, A. Rezakhani, and A. Hamma, J. Math. Phys. (2009)

Testing the q-algo on webgraph models
We tested the algorithm on random webgraph models,
sparse, small-world, scale-free (power law degree distribution):

Testing the q-algo on webgraph models
We tested the algorithm on random webgraph models,
sparse, small-world, scale-free (power law degree distribution):

- preferential attachment model
 links are added at random with a bias for high-degree nodes
 drawback: requires global knowledge of graph
 Degree distribution: 𝑁(𝑑) ∝ 𝑑−3

Testing the q-algo on webgraph models
We tested the algorithm on random webgraph models,
sparse, small-world, scale-free (power law degree distribution):

- preferential attachment model
 links are added at random with a bias for high-degree nodes
 drawback: requires global knowledge of graph
 Degree distribution: 𝑁(𝑑) ∝ 𝑑−3

- copy-model

 - start from a small fixed initial graph of constant out-degree

 - each time step:

 - choose pre-existing “copying vertex” uniformly at random

 - Probability 1 − p: For each neighbor of the copying

 vertex, add a link from a new added vertex to that neighbor

 - Probability p: add link from newly added vertex to uniformly random chosen one

 requires only local knowledge of graph; has tuning parameter p

Degree distribution: 𝑁 𝑑 ∝ 𝑑(2−𝑝)/(1−𝑝)

Efficiency of the q-algorithm

ave. min gap scaling:

[Note: we computed same for generic

sparse random matrices and found gap

~1/poly 𝑛 instead]

𝑇~poly
1

min (gap)
,max𝑠∈[0,1]

𝑑ℎ

𝑑𝑠
,
1

𝜀

numerical diagonalization

Efficiency of the q-algorithm

run Schrodinger equation

with different 𝑇:

 𝑇~𝜀−2

𝑑ℎ

𝑑𝑠
=

preferential attachment, n=16, 1000 graphs

𝑇~poly
1

min (gap)
,max𝑠∈[0,1]

𝑑ℎ

𝑑𝑠
,
1

𝜀

Efficiency of the q-algorithm

𝑇~𝜀−2

𝑑ℎ

𝑑𝑠
=poly(loglog𝑛)

δ~1/poly(log𝑛)

&

&

checked and confirmed using solution of the full Schrodinger equation, for 𝑏 = 3:

actual error always less than 𝜀

𝑇~poly
1

min (gap)
,max𝑠∈[0,1]

𝑑ℎ

𝑑𝑠
,
1

𝜀
 small integer >0

• Problem 1: The Google matrix G is a full matrix...
  ℎ[𝑠(𝑡)] requires many-body interactions...

So is this really an efficient q-algorithm?

• Problem 1: The Google matrix G is a full matrix...
  ℎ[𝑠(𝑡)] requires many-body interactions...

• Can be reduced to 1&2 qubit interactions by using one qubit

per node:
 go from log (𝑛) qubits to 𝑛 qubits (unary representation), i.e.,

 map to 𝑛-dim. “single particle excitation” subspace of 2𝑛-dim
 Hilbert space:

So is this really an efficient q-algorithm?

matrix elements of ℎ 𝑠 𝑡 = 1 − 𝑠 𝑡 ℎ0 + 𝑠(𝑡)ℎ𝑃

probability of

finding excitation

at site i gives

PageRank of page i

𝐻 𝑠 (in 1-excitation subspace) and ℎ(𝑠) have same spectrum  same 𝑇 scaling

Measuring the PageRank

• Problem 2: Once the ground-state has been prepared one
needs to measure the site occupation probabilities (𝜋𝑖)

2/ 𝜋 2

 To recover the complete length-n PageRank vector takes
 at least n measurements (Chernoff bound

∗
)

  back to the classical performance

• Same problem as in the quantum algorithm for solving linear

equations [Harrow, Hassidim, Lloyd, PRL (2009)];

 actually our algorithm is an instance of solving linear equations,

 but assumes a lot more structure

∗
To estimate ith prob. amplitude with additive error 𝑒𝑖 need number of measurements ~ 1/poly(𝑒𝑖)

Measuring the PageRank

• Problem 2: Once the ground-state has been prepared one
needs to measure the site occupation probabilities (𝜋𝑖)

2/ 𝜋 2

 To recover the complete length-n PageRank vector takes
 at least n measurements (Chernoff bound

∗
)

  back to the classical performance

• However: one is typically interested only in the top ranked

pages

• For these pages we nevertheless obtain (again using

the Chernoff bound) a polynomial speed-up for estimating the
ranks of the top 𝐥𝐨𝐠 𝒏 pages

• This is because of the amplification of top PageRank entries
and power-law distribution of the PageRank entries

Summary of results and applications

• Can map adiabatic PageRank algo to Hamiltonians with 1&2
body interactions, with one qubit per node

• Polynomial speed-up for top-log 𝑛 set of nodes

• Exponential speedup in preparation of PageRank

Summary of results and applications

• Can map adiabatic PageRank algo to Hamiltonians with 1&2
body interactions, with one qubit per node

• Polynomial speed-up for top-log 𝑛 set of nodes

• Exponential speedup in preparation of PageRank allows for

an efficient decision procedure about updating of the
classical PageRank:
• Prepare pre-perturbation PageRank state |𝜋 : 𝑇~𝑂[poly log 𝑛]

• Prepare post-perturbation PageRank state |𝜋′ : 𝑇′~𝑂[poly log 𝑛′]

• Compute | 𝜋 𝜋′ | using the SWAP test: ~𝑂(1)
 Decide whether update needed

Conclusions

• Information retrieval provides new set of problems for
Quantum Computation

• Given the existence of efficient classical algorithms it is non-
trivial that QC can provide some form of speedup

• The humongous size of the WWW is an important motivation
to look for such a speedup

• Showed tasks for which adiabatic quantum PageRank
provides a speedup with respect to classical algorithms

Conclusions

• Information retrieval provides new set of problems for
Quantum Computation

• Given the existence of efficient classical algorithms it is non-
trivial that QC can provide some form of speedup

• The humongous size of the WWW is an important motivation
to look for such a speedup

• Showed tasks for which adiabatic quantum PageRank
provides a speedup with respect to classical algorithms

• Why does it work? Sparsity alone seems insufficient.
• Other key features of the webgraph are

• small-world (each node reachable from any other is
log (𝑛) steps)

• degree distribution of nodes is power-law
Which of these is necessary/sufficient?

	Structure Bookmarks
	The WWW is a big place
	The WWW is a big place … and is hard to search
	Classical PageRank computation
	Classical PageRank computation
	Quantum approach
	Adiabatic quantum computation
	The q-algorithm for PageRank
	The q-algorithm for PageRank
	The q-algorithm for PageRank
	Efficiency of the q-algorithm
	Testing the q-algo on webgraph models
	Testing the q-algo on webgraph models
	Efficiency of the q-algorithm
	Efficiency of the q-algorithm
	So is this really an efficient q-algorithm?
	Measuring the PageRank
	Measuring the PageRank
	Conclusions
	Conclusions

