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"l argue that all progress, both theoretical and practical has resulted
from a single human activity: the quest for what | call good
explanations."

David Deutsch, The Beginning of Infinity: Explanations That Transform
the World, 2011

Q‘)




"The field of artificial (general) intelligence has made no progress
because there is an unresolved philosophical problem at its heart: we
do not understand how creativity works."

David Deutsch, The Beginning of Infinity: Explanations That Transform
the World, 2011
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Training a Binary Classifier
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Training a binary classifier




Binary Classifier

Xy = Hy(x)

with x e RM, y € {—1,1} and w € RV




Many machine learning methods formulate training as
optimization problem

v

Goal is to form classifier: y = Hyw(x)
that has minimal generalization error

» Given a set of S training examples {(xs,ys)|s=1,...,S}

v

Training: wo" = argminy, (L(w) + R(w))

v

Loss L(w) controls how well the classifier separates the classes

v

Regularization R(w) controls the complexity of the classifier
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Regularization

M=0

From Bishop, Pattern Recognition and Machine Learning, 2006
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Natural choices of loss and regularization render training
formally NP-hard

For computational efficiency typically a convex objective
L(w)+ R(w) is constructed
But that comes at a cost
Convex losses are not as robust to incorrectly labeled examples
Solutions obtained with convex regularization are not as sparse

Indication that tighter generalization bounds can be obtained with
non-convex losses

Minimum of objective function does not correspond to minimal
training error
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Emboldened by emerging quantum hardware ...

We studied non-convex versions of L(w) and R(w) rendering the
problem formally NP hard

Treated training as an integer programe working with weights w
of low bit depth




Adiabatic quantum optimization (AQO)

gmin

Q 02 04 0.6 08 1

s
H(t): slowly varying Hamiltonian for evolution fromt=0tot=T

H(0) = Hpg: initial Hamiltonian with known and easily preparable
ground state

H(T) = Hp: Hamiltonian whose ground state encodes the
solution to a given instance of an optimization problem

System remains in ground state during quantum evolution:

i v (1) = H(O (1) ol 2




Implementation of AQO in the D-Wave architecture

D-Wave implements the Ising model in hardware:

H[Slng — ZJIIGZ GZ + Z h Gzl)
ij

J; j are coupling strengths between pairs of qubits. h; are biases
of individual qubits. o, are Pauli matrices.

Finding the ground state of Hjsj»g amounts to solving a QUBO
w* = argmin {w'Qw}
w

Equivalent to Weighted MAX-2-SAT
Simplest many body system!
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lllustration of computation in D-Wave processor

Qubits connected via Chimera graph




Linear binary classifier

Y = Hu(x) = sign (; wihi(x) + b)

x € RM: input patterns to be classified

y € {—1,1}: output of the classifier

hi - x — {—1,41}: weak classifiers

w; € [0, 1]: set of weights to be optimized
b € Ris the bias

H(x): strong classifier




Weights with low bit depth are sufficient, are even beneficial
Argument why weights with low bit depth are sufficient
Each training example creates hyper plane in weight space
Those create solution regions
As long as each region contains a least one vertex of the hyper
lattice we are good
Lower bound: bits > log,(f) + log,(e) — 1

Details in arXiv: quant-ph/0811.0416




Training with Convex Loss and Non-Convex Regularization

L(w) = 25:1 Lsquare(ms)

quuare(ms) = (ms - 1)2

ms = ys (w” xs+ b) is the margin of example s
R(w) =2 wlo

O(N) qubits are spent representing the weights and threshold
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Efficient use of qubits allows for flexible (heuristic)
extensions

Assume first round of optimization yields
T

y = sign Z wihi(x)+b
t=1

Assume T < Q
Re-run optimization by adding new weak classifiers
{hi(x)|i=1,...,Q— T} selected via boosting

If large classifier is needed with T > Q
Freeze weights obtained in previous optimization rounds and

concatenate
7-prev Q

y = sign Z wehe(x) + Z wrhy(x) + b
t=1 =1
—_———

frozen

Q‘)

Details in arXiv: quant-ph/0912.0779



Dealing with Outliers
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Convex losses are sensitive to label noise
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Loss functions
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Non-monotonous relationship between objective value and
training error
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Training with Non-Convex Loss and Convex Regularization

L(W) = 25:1 Lq(ms)
La(ms) = min (1 - q)° (max (0,1~ m))*)
R(w) =2 [ w2
In addition to qubits needed to represent w and b we need O(S)
ancillary qubits to represent non-convex loss!

wef T T T p—y
w2 q:_
g 9 —q=-1]
—

Margin




Numerical experiments: non-convex regularization
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AdaBoost Outer Loop | Outer Loop | Outer Loop
Q=64 Q=128 Q =256
Test Error 0.258 + 0.006 | 0.254 +£0.010 | 0.249 + 0.010 | 0.246 + 0.009
Weak Classifiers | 257.8+332.1 | 116.8+139.0 | 206.1 +241.8 | 356.3 + 420.3
Reweightings 658.9 +209.3 | 130.8+65.3 145.6 £65.5 159.8 £63.7 q
Training Error 0.038 +£0.054 | 0.185+0.039 | 0.170 + 0.039 | 0.158 + 0.040

Outer Loops 11.9+5.0 122+46 126+4.4




Improved generalization is expected from
Vapnik-Chernovenkis theory

Vapnik-Chernovenkis dimension:
VCh = 2(VCypy +1)(T +1)logs(e(T+1))

H(x) = L1 hi(x)
VCp;y is the VC dimension of dictionary

Weak LO-norm regularization with A < & + 7= produces classifier
with lower VC bound while not increasing the training error
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Hardware experiments: Training a detector with D-Wave’s

hardware
Car detector

Detect cars in images
Training data: 20,000 images with city street scenes

Calls to quantum hardware with 52-variable optimization
problems

NIPS Demo 2009




Numerical experiments: non-convex loss
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Numerical experiments: non-convex loss
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Training with low-precision discrete weights yields significant
levels of sparsity

Sparsity (%)
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Challenges mapping to D-Wave hardware

Problems Solutions
Higher order interactions can
Objective needs be reduced to quadratic by
to be quadratic. introducing auxiliary qubits.
More qubits!
—

By stringing physical qubits
together to form logical qubits
that can be arbitrarily connected.

—e

Sculpt QUBO that can be represented by
the hardware to fit samples from objective.

adhere to Chimera graph.
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Underexplored opportunity

Use D-Wave hardware as a sampling engine

Many machine learning methods are based on sampling from a
probability distribution.

Non-zero temperature gives Boltzmann distribution:

p(s) - PLBE)

Open quantum systems analysis: How does the probability
distribution look if the adiabatic condition is violated?

Native hardware mode is sampling!

Approximate solutions by AQO not well studied

But post-PCP-theorem work indicates that approximate solutions
can be used to optimally solve NP-hard problems in polynomial
time (Dickson and Amin’11; Zuckerman, STOC’06)
‘@




Summary

Non-convex training of a binary classifier can be mapped to a
QUBO format amenable to quantum optimization at "negative
translation cost"

Lower generalization error

More compact classifiers

Can better cope with outliers

Less training cycles (when using boosting)

Experiments underway to run problem instances on D-Wave One
quantum computer
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