
Quantum Algorithms
for Data Streams
Wim van Dam
Departments of Computer Science and Physics
University of California, Santa Barbara

NASA 2012 QFT 1.0: First NASA Quantum Future Technologies
Conference, NASA Ames Research Center, Moffett Field, US-CA
Thursday, January 19, 2012

Copyright 2012, Wim van Dam, UC Santa Barbara

Copyright 2012, Wim van Dam, UC Santa Barbara

This research is supported by
the National Science Foundation

Joint work with Qingqing Yuan (UCSB)

Copyright 2012, Wim van Dam, UC Santa Barbara

Data Streams
In the data stream model we have to
process input that arrives sequentially
and that is too large to be stored by
the computer.
Cf. traditional setting

where the input size

N is ‘small’ and we

can read and write

the data repeatedly,

and the time/space

requirements are

hopefully poly(N).

Copyright 2012, Wim van Dam, UC Santa Barbara

Data Stream Algorithms
A realistic setting when dealing with large streams of data in
an online setting (like internet routers):

X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X12, X13, X14, X

We want to calculate a function Classic example: Xj∈A
on the input stream X1…XN; with large alphabet A;
N is large, and the stream will what is the most frequent
only pass by once… element in X1…XN?
How much internal memory will we need?

Copyright 2012, Wim van Dam, UC Santa Barbara

Most Frequent Element
[Alon-Matias-Szegedy’99] “For sequences X∈{1,…,M}N,
determining the most frequent element (approximately)
requires Ω(M) bits of memory.”

Worst case setting occurs when M>N and almost all
elements X1,…,XN are unique such that we have to keep
track the frequencies fj for all values j∈{1,…,M}.

Think of routers monitoring IP addresses.

The proof uses bounds from communication complexity.

Can we do better “quantumly”?

Copyright 2012, Wim van Dam, UC Santa Barbara

Copyright 2012, Wim van Dam, UC Santa Barbara

We live in a time of…
- exceptionally large data streams
- exceptionally small quantum computers

“The Moment is Now”

Quantum Algorithms for Data Streams?

Less Quantum Memory?
Quantum algorithms on data streams:
Idea and Hope: using quantum memory to significantly
reduce the memory requirements for the data stream tasks.

Arguments Con: By Holevo’s theorem we know that qubits
do not carry more information than classical ones.

Arguments Pro: We know that we can save memory
requirements for communication complexity and for finite
automata computations.

Copyright 2012, Wim van Dam, UC Santa Barbara

[Le Gall’06]: First exponential quantum-classical memory
reduction for a specific data stream problem.

A Quantum Algorithm for
Most Frequent Item Problem?
For a stream X ∈ {1,…,M}N find the largest one among
the M frequencies fj = |{ 1⩽i⩽N : Xi=j }|.

√Quantumly, in one pass, we can

|j, fj)/ M
create superpositions like these

j∈{1,...,M}

Does this give a quantum algorithm with memory
requirements that are less than O(M)?

Copyright 2012, Wim van Dam, UC Santa Barbara

Quantum Lower Bound I
Result: the Ω(M) bound also holds in the quantum case.

Sketch of proof (rephrasing it as the Disjointness problem in
communication complexity):
- Assume an algorithm with quantum memory size s.

- Assume frequencies fj that are 0, 1 or 2.

- Let two parties A and B have 2 strings ∈ {0,1}M; viewed as
characteristic vectors, A and B have 2 subsets ⊆{1,…,M};
concatenate these subsets to one string X.

- Disjointness problem for {0,1}M is solved answering: “Is

there an element with frequency > 1 in the sequence X?”

Copyright 2012, Wim van Dam, UC Santa Barbara

Quantum Lower Bound II
Result: the Ω(M) bound also holds in the quantum case.

Sketch of proof (rephrasing it as the Disjointness problem in
communication complexity; assume s qubits of memory):

- Disjointness problem for {0,1}M is solved answering: “Is
there an element with frequency > 1 in the sequence X?”

- A runs the data stream algorithm on the first part of X, then
sends her s qubits to B, who then finishes the protocol.

- By the quantum one-way Disjointness bound: s∈Ω(M).

Copyright 2012, Wim van Dam, UC Santa Barbara

Repeated Inputs
We did not get a quantum improvement because we had to
consider the 1-way communication complexity of DisjointM.

To get the quantum improvement we have to consider the
data stream equivalent of multi-round communication.

This translates into assuming repeats XX…X of the input X.

Copyright 2012, Wim van Dam, UC Santa Barbara

Result: Given X∈{1,…,M}N, on input Xk with k=√M
there exists a quantum algorithm with O(log M+log N)
qubits that solves the most frequent element problem.
Classically one needs Ω(√M) bits of memory.

The Quantum Advantage
For X∈{1,…,M}N, let f1,…,fM denoted the frequencies.

- Parsing the string X once, the quantum algorithm can
create the superposition (∑j |j,fj⟩)/√M of log M+log N bits.

- A quantum algorithm can find the maximum frequency fj
in √M queries, hence after √M parsings of X the quantum
algorithm knows the most frequent element.

Classically, we can use the Ω(M) lower bound for the
Disjointness problem for multi-round communication to
show that the memory needs to be Ω(√M) bits for any
classical data stream algorithm for the same problem.

Copyright 2012, Wim van Dam, UC Santa Barbara

Another Result This one

is for Cris

Let the data stream be X=g1,…,gN with all gj∈G
of a (possibly non-Abelian) group G.

Identity problem: Is the product g1⋅…⋅gN the identity?
Obvious solution: Keep track of the product as you see the
elements pass by; this gives a O(log|G|) upper bound.

More fancy quantum solution using representation theory:
Let dλ be the dimensions of G’s irreducible representations.
There is a probabilistic quantum algorithm that on average
uses ∑λ dλ2⋅log dλ/|G| qubits of memory.

Copyright 2012, Wim van Dam, UC Santa Barbara

For groups like ℤ/Nℤ and DN this implies O(1) qubits.

Classically, one needs Ω(log|G|) bits [Ambainis’98].

The Quantum Algorithm
- Before starting to read the string, pick an irreducible
representation λ of G with probability dλ2/|G|.

- Keep track of the representation λ(g1g2…)∈SU(dλ) of the
product g1g2… using 2 log dλ qubits as

(λ(g1g2 · · ·) ⊗ I)(|1, 1,) + · · ·+ |dλ, dλ))/
√
dλ

- After processing the whole string measure if the
representation λ(g1⋅…⋅gN) is the identity, or not.

- We will detect this with probability 1/2.

Copyright 2012, Wim van Dam, UC Santa Barbara

- Use several representations to improve success rate.

Copyright 2012, Wim van Dam, UC Santa Barbara

Diagram that Explains it All

Quantum
Finite Automata

Quantum
Communication

Complexity

Quantum Data Stream Algorithms

