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Quantum Phase Estimation

Quantum Measurement and Control

@ Quantum measurement theory
puts fundamental limits on the
accuracy of phase estimation
— quantum phase estimation.

@ measurement-based quantum
control is making the unitary
evolution of, or measurements on,
the system depend upon the
results of past measurements.

@ The latter case, adaptive

Howard M. Wiseman and Gerard ). Milburn measurements, can help to
achieve the quantum limits in
| commve | quantum phase estimation.
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Quantum Phase Estimation

What is a quantum phase?

@ A phase ¢ is an argument in a unitary operator

~

U = exp(ioh),
where the spectrum of fis (a subset of) the naturals {0,1,2,---}.
@ e.g. ¢ could be a linear optical phase shift and n could be
e the photon number operator &' & of a field mode.

o the total number of photons Z,’; & 2 across a bunch of modes.

o the total number of photon passes: Z,’f=1 pké,ték, where py is the
number of times mode k passes through the phase shift.

@ or ¢ could be a qubit gate parameter, a case considered later.
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Quantum Phase Estimation

Defining the accuracy of a phase estimate

@ Denote the phase to be estimated by &, the estimate by ¢, and
the error & — ¢ € [—x, 7r]. (Capitals denote random variables.)

@ The Mean-Square-Error is MSE,, := [717 dd (4 — ¢)2 p(d|$)

@ For phase-sensing around ¢, MSE, is sufficient. But for ab initio
phase estimation we need the Average-Mean-Square-Error

1 2r

(09 = 5 [ doMSE, — | dvtp(0)
27T 0 J_x

where p(¢) = 5= [2™ do p( + ¢|¢), the distribution for & — .
@ If p(¢) is symmetric and concentrated about zero, the AMSE is
well approximated by the Holevo Variance,

(0n®)? := ()2~ 1,

which is often more useful in practice.
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Quantum Phase Estimation
Standard Quantum Limit and Heisenberg Limit

@ To obtain limits for phase estimation we must restrict the state,
e.g. to one with support on the n-eigenvalues {0,1,--- , N}.
@ The Standard Quantum Limit is

5P)2~ ~1/Nfor N> 1.
SQL

@ This can be achieved for i = k 1(akak) with K = N and an
input state which is a tensor product of states of the form |0) + [1)
(where these denote eigenstates of é,ﬁék), ore.g. [0,1) + [1,0).

@ The ultimate quantum limit is what | will call the Heisenberg Limit
[Luis and Pefina, PRA (1996); Hall et al, arXiv 1111.0788v1],

)2, ~ 72 /N2 for N> 1.
HL

@ This is the achievable lower bound for quantum phase estimation.

@ For a general and rigorous bound with (n) instead of N see Hall,
Berry, Zwierz and Wiseman, arXiv 1111.0788v1 (cf. the more
complicated bound of GLM, which is not limited to phase).
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Quantum Phase Estimation

The (Quantum) Cramér-Rao Bound

@ Consider the following special case:
e The input state is a tensor product of M copies of a given state p.
e Each copy mis transformed as pm — exp(idhm)pm exp(—idhy).
e Each copy is fed into an identical measurement apparatus M.

@ In this case there exists a Cramér-Rao Bound for the error
o 1
DY) A —
OO 2 M Fa@0)
where Fu(¢), the Fisher information, is an easily calculable
function of p, M, and the true phase ¢.
@ Moreover, there is also a Quantum Cramér-Rao Bound:
v 1
02> —— —
O = 1% Fa(#, p)
where Fq(¢) = maxy Faq(o, p) is an easily calculable (for p pure

anyway) function of p and ¢.
@ These bounds are often achievable for M > 1 but not always.

Howard M. Wiseman (Ciriffith University) Quantum limits in phase estimation NASA QFTC, January 2012 8/29



Quantum Phase Estimation

Fisher Information, SQL, and HL

@ Recall (§0)2, ~ 1/Nfor N> 1.
@ Consider again the following special case where
@ the input comprises many (M) identical copies, so that
N = M x nmax, where each copy has support on {0, - , N }-
e each copy is measured identically, so ()2 > 1/[M x Fa(¢, p)].
@ Then to surpass the SQL it is necessary to have F(®, p) > Nmax-
@ It can be shown that Fg(#, p) < n2,., and this bound is achievable,

max’

by the NOON state |Nmax, 0) + |0, Nmax) Jon Dowling talked about.
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Quantum Phase Estimation

Fisher Information, SQL, and HL

@ Recall (§0)2, ~ 1/Nfor N> 1.
@ Consider again the following special case where

e the input comprises many (M) identical copies, so that

N = M x nmax, where each copy has support on {0, - , N }-

e each copy is measured identically, so ()2 > 1/[M x Fa(¢, p)].
@ Then to surpass the SQL it is necessary to have F(®, p) > Nmax-
@ It can be shown that Fg(#, p) < n2,., and this bound is achievable,

by the NOON state |Nmax, 0) + |0, Nmax) Jon Dowling talked about.

@ However this does not mean that the bound

v 1 M
(602 > ——— = W

T MxnZ,
is achievable (by any state) and in particular it cannot possibly be
even close to achievable for M < 10, because

Y \2 7

(6®)aL ~ N2
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Single-Pass Experiments Beyond the SQL

Previous Experiments (to 2010)

@ Sub-SQL photonic interferometry experiments go back to Kuzmich
& Mandel (1998) [sub-SQL phase quadrature measurements (i.e.
squeezing, homodyne) are older.]

@ Previous experiments have (at best) prepared states p and done
measurements M with a particular phase ¢ such that

FM(¢? IO) > Nmax,

a necessary condition to do sub-SQL phase estimation.
@ However, none of them actually estimated a phase by
@ choosing a random phase ¢,
@ taking a finite data set using state(s) with maximum photon
numbers summing to N in total,
© using the data to obtain an estlmate ¢, without knowledge of ¢,
© calculating the square error ©? = (¢ — ¢)2.

and repeating many times to obtain an AMSE (§®)? less than 1/N.
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Single-Pass Experiments Beyond the SQL

First ab initio || nature LETTERS
sub-SQL photonics PUBLEHED VLN 12 DECEMBER 20101 501101038 APHETON 10388
(single-pass)
phase Entanglement-enhanced measurement of a
estimation completely unknown optical phase
experiment G. Y. Xiang'?, B. L. Higgins', D. W. Berry?, H. M. Wiseman'* and G. J. Pryde'*
. @ By post-selecting on getting
4, @ - e | n = 2 or 4 photons, our input
jgebei | e U _. . states are |Holland-Burnett).
RRdl H H N ﬂ*. } @ Unlike other such experiments,
— U U jjU H*U j this is (essentially) the only
B = post-selection we do.
| ¢ }. q E.'E’;?:Sh“ﬁiﬁ - koo all click- .
: i {1 detector @ i.e. we keep all click-patterns:
; .TH_ e gz @A (O orn=1;
| i | e (0,2), (1,1), and (2,0) for n = 2;
wover (5P beam spter (0,4), (1,3), (2,2), (3,1), and

. resolving
. detection '

(4,0) for n=4.
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Single-Pass Experiments Beyond the SQL

Why one can’t use the same state p each time
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Quantum limits in phase estimation

There are two 1-photon fringes: (0,1); and
(1,0), with period 2. This gives the SQL.
There are two 2-photon fringes: (0,2) and (2,0)
together; and (1,1), with period .
There are three 4-photon fringes: (0,4) and
(4,0) together; (1,3) and (3,1) together; and
(2,2). These have periods 7, 7/2, and 7 resp.
Using only one type of state (2 or 4 photon)
makes ab initio phase estimation impossible
because there is no way to dlstlnguish a phase
¢ from a phase ¢ + 7 50 (60)? > (7/2)2.
The optimal solution, for a given N, is to use
some 1-, some 2-, and some 4-photon states.
e.g. for N = 48, we use this

: 10x2-photon states, then
8x 1-photon states, then 5x4-photon states.
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Single-Pass Experiments Beyond the SQL

Why one can’t use a fixed measurement M for each p

Haltwave 4@ Foro-coupled
e . single-photon
P detector

=
—f— H etect
Interference Optic fibre
—fF= filter, 3 nm launcher
Number-
resolvin
ete

Polarizing
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Quantum limits in phase estimation

@ The measurement M is defined by photon

counting with only a single variable
parameter, 0, the auxilliary phase shift.

The Fisher information

F./\/l((bap) = F9(¢7p) = F0(¢_ eap)

is very sensitive to ¢ — 6.

Curve here is a fit from real 4-photon data;
recall that sub-SQL requires Fy(¢ — 0, p) > 4.
The optimal solution, is to choose 6
depending on ¢ so as to maximize Fy(¢ — 6).
But ¢ is unknown. Therefore we need to use
an adaptive technique, in which 6 depends
on the estimate of ¢ from data from states
earlier in the
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Single-Pass Experiments Beyond the SQL

Nevertheless why Fisher information is still useful
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Multi-Pass Experiments Scaling at the HL
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Multi-Pass Experiments Scaling at the HL

A single-photon adaptive multipass experiment

1) 5 (10)[1) + [1)[0)) 7 (€P°10)[1) + €7[1)]0))
3 3 ¢ o U =exp(iph),
! : with 1 =
| | et P
3 l @ There is at
| | most one
! ! photon in

3 l \ each mode k.

/|

@ Thus here

N= bk

is the max.
total number
of photon-

N 9

>
>

passes
Processor J th roug h 2
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Multi-Pass Experiments Scaling at the HL

Vol 45015 November 2007|doi:10.1038/nature06257 nature

First ab initio

phase LETTERS

estimation

experiment . . .
wit$1 HL Entanglement-free Heisenberg-limited phase
scaling estimation
B. L. Higgins', D. W. Berry?, S. D. Bartlett®, H. M. Wiseman'* & G. J. Pryde'
3 - T ] @ Multipasses (p) give
= — E I fringes of period 27/p,

just like in p00p states.
@ Thus

SQL, experimental data
 —— SQL, numeric calculation
¢ QPEA, experimental data
01 QPEA, analytic calculation

are necessary.
e.g. N =390 is 6 each of
32,16,8,4,2,1 passes.

Variancex N
(=]
w

[ A GQPEA M = 6, experimental data
GQPEA M = 6, numeric calculation

0.03 B Heilsenberg limit, anajlytic calculation ) ) ] o Adap“ve deteCtIOI’l |S
10 30 100 300 again useful, and this
Number of resources, N t|me g|ves HL-Sca“ng
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Multi-Pass Experiments Scaling at the HL

Is adaptive
detection
necessary to
achieve HL
scaling from
multi-pass
single-
photons?
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Multi-Pass Experiments Scaling at the HL

Is adaptive N j I f Ph =
necessary to
achieve HL
scaling from  |Demonstrating Heisenberg-limited unambiguous
multi-pass phase estimation without adaptive measurements
single-
9 0 B L Higgins!, D W Berry>>*, S D Bartlett’, M W Mitchell®,
photons* H M Wiseman'7 and G J Pryde'"’
B r 3 T I I ] @ As in the adaptive case
1 - the sequences have p =
2 pk =2k {1,2,--. 2K},
03 [ u soL eperimentai data @ In the nonadaptive case
3 [0 QPEA eperimanal dots we find a good results by
01 £ 7o NAMP somimentsl dotr repeating each px
r —— NAMP, numeric calculation 1
N R :
0.03 [ Heisenberg limit, analytic calculation ] M(K, k) = Mk + (K — k)
10 30 100 300 . .
Number of resources, N t|meS, with MK - 25 M= 3.
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Qubit Gate Characterization Experiment and Theory
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Qubit Gate Characterization Experiment and Theory

Multipassed single photon = repeated gates on qubit

@ For single photon inputs, each pass through an unknown phase is
equivalent to the application of a polarization qubit gate

U = exp(i¢5),
where 6z = [1,0)(1,0] — [0, 1){0, 1] = [H)(H| — [V)(V/.
@ If we could make a QND measurement on a photon we could
estimate ¢ arbitrarily accurately using a single photon.

@ For many solid-state qubits QND projective read-out is feasible.
However, adaptive measurements are slow.

@ Recall our non-adaptive algorithm, with p, = 2k € {1,2,... 2K}
each M(K, k) = Mk + u(K — k) times.

PHYSICAL REVIEW B 83, 125410 (2011) ThIS WOl’kS We” even for
Nanoscale magnetometry using a single-spin system in diamond IOW'VlSlblIlty fri nges, for
R.S. Said,' D. W. Berry,” and J. Twamley' SU|tab|y Chosen MK and M.
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Qubit Gate Characterization Experiment and Theory

Applying our nonadaptive algorithm in magnetometry

nature LETTERS
nanotechnology

PUBLISHED ONLINE: 18 DECEMBER 2011 | DOI: 10.1038/NNANO.2011.224

High-dynamic-range magnetometry with a single
nuclear spin in diamond

G. Waldherr'*, J. Beck', P. Neumann’, R. S. Said?>3, M. Nitsche', M. L. Markham?, D. J. Twitchen?,
J. Twamley?, F. Jelezko's and J. Wrachtrup'

nature

nanotechnology LETTERS

PUBLISHED ONLINE: 18 DECEMBER 2011 | DOI: 10.1038/NNANO.2011.225

High-dynamic-range magnetometry with a single
electronic spin in diamond

N. M. Nusran, M. Ummal Momeen and M. V. Gurudev Dutt*
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Qubit Gate Characterization Experiment and Theory

A different resource: Number of read-outs.

@ If the duration 7, of the gate U is greater than or comparable to the
read-out time 7, it makes sense to quantify resources by

N = N, = number of qubit-passes o total time .
@ However for many qubits 7. > 7, in which case
N; = number of read-outs « total time

(Apology: in the plots that follow, N; is simply notated N.)

@ Further apology: in the following | will use m (rather than p) for the
number of coherent gate applications prior to a read-out.

@ For schemes in which {m} is predetermined, np, is the number of
trials using a given m, so that N, = M__ n,,.
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Qubit Gate Characterization Experiment and Theory

How well can we actually do?

o If we apply the mutlipass-photon protocol presented above we
have m=1,2,4,---2% and n, = 6Vm, so that N; = 6(K + 1)
while N, = 6 x (2K+1 — 1) ~ 6 x 2M/8, 50 that

((5&3)2 X N;Q o 27 N/3,

@ AFAIK the best known scheme is the n,, = 4 Vm case of our 2007
Nature scheme, giving

(0®)? oc Ny 2 oc 27M/2,
@ |Is this the best possible scaling? What does the CRB say?
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Qubit Gate Characterization Experiment and Theory

How well can we actually do?

o If we apply the mutlipass-photon protocol presented above we
have m=1,2,4,---2K and n, = 6 Vm, so that N, = 6(K + 1)
while N, = 6 x (2K+1 — 1) ~ 6 x 2M/8, 50 that

(69)? NgQ x 27 N/3,

@ AFAIK the best known scheme is the n;, = 4Vm case of our 2007

Nature scheme, giving
(0®)? oc Ny 2 oc 27M/2,
@ |Is this the best possible scaling? What does the CRB say?

@ Fp(¢,v) = m. So F can be arbitrarily large, while N; is finite.
@ Fisher information gives no lower bound on (§®)? in terms of N,

Howard M. Wiseman (Griffith University) Quantum limits in phase estimation NASA QFTC, January 2012 24/29



Qubit Gate Characterization Experiment and Theory

How well can we actually do?

If we apply the mutlipass-photon protocol presented above we
have m=1,2.4,.--2X and np, = 6Ym, so that N, = 6(K + 1)
while N, = 6 x (2K+1 — 1) ~ 6 x 2M/8, 50 that

(69)? Ngz x 27 MN/3,
AFAIK the best known scheme is the n,, = 4 Vm case of our 2007
Nature scheme, giving

(0®)? oc Ny 2 oc 27M/2,

Is this the best possible scaling? What does the CRB say?
Fm(#,1) = m. So F can be arbitrarily large, while N is finite.
Fisher information gives no lower bound on (6®)2 in terms of N;
However an informational argument does: each measurement
yields at most one bit. At best this can halve the range of ¢, so

72
(6P)2 > ? x 272N,
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Qubit Gate Characterization Experiment and Theory

What if we can’t change the measurement basis?

@ All the above algorithms rely upon an auxilliary phase 6 which can
be arbitrarily set.

@ In the qubit gate characterization case, it may not be possible to
do this (e.g. it might be g, the coupling of the spin to a magnetic
field, which is unknown).

@ Therefore it is interesting to ask how well can we do without 6.

@ In this case the only thing that can be adapted is m, the number of
of gate applications prior to read-out.

@ Adopting a locally optimal adaptive strategy for choosing m gives
(60)2 x 27N o =0.21 £0.02

and this is exponentially better than standard estimation
techniques. [A. Sergeevich, A. Chandran, J. Combes, S. D.
Bartlett, and H. M. Wiseman, Phys. Rev. A 84, 052315 (2011).]
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Qubit Gate Characterization Experiment and Theory

PHYSICAL REVIEW A 84, 052315 (2011)

Characterization of a qubit Hamiltonian using adaptive measurements in a fixed basis

Alexandr Sergeevich,] Anushya Chandran,?? Joshua Combes,>* Stephen D. Bartlett,' and Howard M. Wiseman?® |

107" +: :q\l,er:11,2,3,...,M E For these
—4— Adaptive Method ] non'adaptive

— schemes,

A A

g 10° 4
oo 1 N=npm,so
g N, =nx .
Al ] r m
= 107 n=1is
i | near-optimal
i scheme of
10 & =

this sort, with

0 10 20 30 40 50 60 70 80 90 100 ((5¢)2 X N;s.
Total Number of Samples (N)
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Qubit Gate Characterization Experiment and Theory

How to best sample a periodic probability distribution, or on the accuracy of
Hamiltonian finding strategies

Christopher Ferrie,"? Christopher E. Granade,"? and D.G. Cory"%?®

! Institute for Quantum Computing, University of Waterloo, Waterloo, Ontario, Canada

This [arxiv:1110.3067 (13 Oct 2011)]
reproduced many of our results
analytically including:

Mean Squared Error

® For n= N scheme (their “tx = 7”)
(60)% oc N~

® For n =1 scheme (their “t = k")
(09)% ox N3

® For =+ our adaptive scheme,
(66)? x 27N though o ~ 0.317.

Mean Squared Error

Also, using Fisher information, they

v 7—2
showed for finite Ty, (§6)? > N

L L L
20 30 40 50 60 70 80 % 100 110 120
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Conclusions

Conclusions

@ Phase is any parameter that gives a 2r-periodic signal, which
turns up in many different contexts.
@ Quantum mechanics bounds from below the error of phase
estimation (in terms of different resources in different contexts).
@ The Cramér-Rao bound (from Fisher information) is common, but
e The bound assumes identical measurements on identical states,
which is not the case in many phase estimation schemes.
o In some cases (e.g. NJON states) the (Q)CRB is never achievable
e For some resources (e.g. N;), the CRB gives a trivial lower bound.
@ Other bounds (Heisenberg, informational) apply to general
scenarios, including , with adaptively
changing measurements as needed for optimal phase estimation.
@ Nevertheless for many realistic situations (e.g. with limited
entanglement, limited number of passes, or limited coherence
times), the minimum,, CRB is a useful lower bound on the error
even in these more general scenarios.
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