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Quantum Phase Estimation 

Quantum Measurement and Control
 

Quantum measurement theory 
puts fundamental limits on the 
accuracy of phase estimation 
=⇒ quantum phase estimation. 

measurement-based quantum 
control is making the unitary 
evolution of, or measurements on, 
the system depend upon the 
results of past measurements. 

The latter case, adaptive
 
measurements, can help to
 
achieve the quantum limits in
 
quantum phase estimation.
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Quantum Phase Estimation 

What is a quantum phase? 

A phase φ is an argument in a unitary operator 

Û = exp(iφn̂), 

where the spectrum of n̂ is (a subset of) the naturals {0, 1, 2, · · · }. 
e.g. φ could be a linear optical phase shift and n̂ could be 

the photon number operator â†â of a field mode. 
†the total number of photons 

�K â âk across a bunch of modes. k=1 k 
†the total number of photon passes: 

�K 
=1 pk â âk , where pk is the k k 

number of times mode k passes through the phase shift. 

Or φ could be a nonlinear optical phase shift — a χ(2q−1)
 

self-phase-modulation parameter — and n̂ could be
 
the qth power of the photon number operator (â†â)q of a field mode. 

†blah blah 
�K 

=1 pk (â âk )
q

k k 

or φ could be a qubit gate parameter, a case considered later. 
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Quantum Phase Estimation 

Defining the accuracy of a phase estimate 

Denote the phase to be estimated by Φ, the estimate by Φ̆, and 
the error Φ̆− Φ ∈ [−π, π]. (Capitals denote random variables.) 

The Mean-Square-Error is MSEφ := 
J φ+π d φ̆ (φ̆− φ)2 p(φ̆|φ)φ−π 

For phase-sensing around φ, MSEφ is sufficient. But for ab initio 
phase estimation we need the Average-Mean-Square-Error 

1 
� 2π � π 

(δ ̆ = dφ MSEφ = dϕϕ2 p(ϕ)Φ)2 
2π 0 −π
 

where p(ϕ) = 1 J 2π dφ p(ϕ + φ|φ), the distribution for Φ̆− Φ.
2π 0 
If p(ϕ) is symmetric and concentrated about zero, the AMSE is 
well approximated by the Holevo Variance, 

˘(δH Φ)2 := |(eiΘ)|−2 − 1, 

which is often more useful in practice. 
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Quantum Phase Estimation 

Standard Quantum Limit and Heisenberg Limit 

To obtain limits for phase estimation we must restrict the state, 
e.g. to one with support on the n̂-eigenvalues {0, 1, · · · , N}. 
The Standard Quantum Limit is 

(δ ̆ SQL ∼ 1/N for N » 1.Φ)2 

KThis can be achieved for n̂ = k=1(â
† 
k âk ), with K = N and an 

input state which is a tensor product of states of the form |0) + |1)
(where these denote eigenstates of â† k âk ), or e.g. |0, 1) + |1, 0). 
The ultimate quantum limit is what I will call the Heisenberg Limit 
[Luis and Peřina, PRA (1996); Hall et al, arXiv 1111.0788v1], 

(δ ̆ HL ∼ π2/N2 for N » 1.Φ)2 

This is the achievable lower bound for quantum phase estimation. 
For a general and rigorous bound with (n̂) instead of N see Hall, 
Berry, Zwierz and Wiseman, arXiv 1111.0788v1 (cf. the more 
complicated bound of GLM, which is not limited to phase). 
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Quantum Phase Estimation 

The (Quantum) Cramér-Rao Bound 
Consider the following special case: 

The input state is a tensor product of M copies of a given state ρ. 
Each copy m is transformed as ρm → exp(iφn̂m)ρm exp(−iφn̂m). 
Each copy is fed into an identical measurement apparatus M. 

In this case there exists a Cramér-Rao Bound for the error 

(δ ̆Φ)2 ≥ 
1 

M × FM(φ, ρ) 

where FM(φ), the Fisher information, is an easily calculable 
function of ρ, M, and the true phase φ. 
Moreover, there is also a Quantum Cramér-Rao Bound: 

(δ ̆ ,Φ)2 ≥ 
1 

M × FQ (φ, ρ)

where FQ(φ) ≡ maxMFM(φ, ρ) is an easily calculable (for ρ pure 
anyway) function of ρ and φ. 
These bounds are often achievable for M » 1 but not always. 
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Quantum Phase Estimation 

Fisher Information, SQL, and HL 
Recall (δ ̆ SQL ∼ 1/N for N » 1.Φ)2 

Consider again the following special case where 
the input comprises many (M) identical copies, so that 
N = M × nmax, where each copy has support on {0, · · · , nmax}. 
each copy is measured identically, so (δ ̆Φ)2 ≥ 1/[M × FM(φ, ρ)]. 

Then to surpass the SQL it is necessary to have FM(φ, ρ) > nmax. 
It can be shown that FQ(φ, ρ) ≤ n2 , and this bound is achievable, max
by the NØØN state |nmax, 0) + |0, nmax) Jøn Døwlıng talked about. 
However this does not mean that the bound 

(δ ̆Φ)2 ≥ 
1 

= 
M 

M × n2 N2 
max 

is achievable (by any state) and in particular it cannot possibly be 
even close to achievable for M < 10, because 

π2 
(δ ̆Φ)2 

HL ∼ 
N2 . 
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Single-Pass Experiments Beyond the SQL 

Previous Experiments (to 2010)
 

Sub-SQL photonic interferometry experiments go back to Kuzmich 
& Mandel (1998) [sub-SQL phase quadrature measurements (i.e. 
squeezing, homodyne) are older.] 
Previous experiments have (at best) prepared states ρ and done 
measurements M with a particular phase φ such that 

FM(φ, ρ) > nmax, 

a necessary condition to do sub-SQL phase estimation. 
However, none of them actually estimated a phase by 

choosing a random phase φ, 
taking a finite data set using state(s) with maximum photon 
numbers summing to N in total, 
using the data to obtain an estimate φ̆, without knowledge of φ, 

1 

2 

3 

4 calculating the square error ϕ2 = ( φ̆− φ)2.
 
and repeating many times to obtain an AMSE (δ ̆ 
Φ)2 less than 1/N. 
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Single-Pass Experiments Beyond the SQL 

First ab initio 
sub-SQL 
(single-pass) 
phase 
estimation 
experiment 

Entanglement-enhanced measurement of a
completely unknown optical phase
G. Y. Xiang1,2, B. L. Higgins1, D. W. Berry3, H. M. Wiseman1* and G. J. Pryde1*

Precise interferometric measurement is vital to many scientific
and technological applications. Using quantum entanglement
allows interferometric sensitivity that surpasses the shot-noise
limit (SNL)1,2. To date, experiments demonstrating entangle-
ment-enhanced sub-SNL interferometry3–6, and most theoretical
treatments7–13, have addressed the goal of increasing signal-to-
noise ratios. This is suitable for phase-sensing—detecting small
variations about an already known phase. However, it is not suffi-
cient for ab initio phase-estimation—making a self-contained
determination of a phase that is initially completely unknown
within the interval [0, 2p). Both tasks are important2, but not
equivalent. To move from the sensing regime to the ab initio esti-
mation regime requires a non-trivial phase-estimation algor-
ithm14–17. Here, we implement a ‘bottom-up’ approach,
optimally utilizing the available entangled photon states,
obtained by post-selection5,6. This enables us to demonstrate
sub-SNL ab initio estimation of an unknown phase by entangle-
ment-enhanced optical interferometry.

The SNL for ab initio phase-estimation is a standard deviation
df of 1/

!!!
N

√
(asymptotically), compared with the best achievable

performance of p/N (the Heisenberg limit)2. Here, N is the total
number of photon-passes through the unknown phase f. Using
entangled multiphoton states yields an in-principle advantage in
bandwidth over recent demonstrations of sub-SNL phase measure-
ment using multiple passes of single photons16. The latter is unsui-
table for very fast measurement because the time t to complete a
measurement scales with N. Obtaining increased precision
without significantly decreasing the bandwidth can only be achieved
by entanglement.

One technique for achieving sub-SNL ab initio phase-estimation
using entangled states would be to apply the measurement algor-
ithm of ref. 16 to a sequence of entangled n-photon ‘NOON’
states12,18–22 of varying n. These are the states that are optimal for
phase-sensing for a given n. In this case, the measurement time t
increases only as log N. NOON states, however, are notoriously dif-
ficult to generate, even for moderate n. Previous investigations into
exploiting entanglement-enhanced sensitivity have used a ‘top-
down’ approach, starting with a theoretical knowledge of the
optimal states and determining how to approximate these exper-
imentally by constructing complex circuits to filter them from
more easily produced states, and selecting only some types of
measurement results—only one or two of the five possible results
for four-photon states, for example5,6. In contrast, we adopt a
‘bottom-up’ approach by taking available entangled states and
using a complete set of detectors, and all possible detection patterns,
to obtain the maximum possible phase information. Our scheme
uses Bayesian analysis and optimized adaptive feedback23. In con-
trast to the algorithm of ref. 16, our general approach can be
applied to any entangled state, not just NOON states.

In our experiment, we use n-photon dual Fock state inputs (that
is, states of the form |n/2,n/2la,b) to the first beamsplitter of the
interferometer, as shown in Fig. 1. These states have been shown
to be capable of phase-sensing at the Heisenberg limit6,10,24, that
is, with Fisher length O(1/n). The heralded generation of these
states has very recently been demonstrated25 for n¼ 2, and in prin-
ciple this is extendible to larger n. At the present time, to study these
states beyond n¼ 2, it is necessary to post-select on obtaining the
correct number n of detections in the output array, because spon-
taneous parametric downconversion (SPDC) produces a superposi-
tion of these states with different n. As in other experiments that
have used this technique5,6,20–22,26, we count only the photons
detected in n-fold coincidences. Another bottom-up approach is
to measure the whole superposition, as studied theoretically in
ref. 27. In our experiment, we use both the two-photon state |1,1l
and the four-photon state |2,2l (as well as the single-photon input
|1,0l) at different stages of the estimation protocol.

Non-classical interference of the dual Fock states at the first beam-
splitter produces photon number entanglement in the two arms of the
interferometer, c and d. For a |1,1la,b input, the state inside the inter-
ferometer is the n¼ 2 NOON state (|2,0lc,d + |0,2lc,d)/

!!
2

√
. With the

unknown phase shift f in one arm of the interferometer, and a con-
trollable ‘feedback’ phase shift u in the other arm, this state evolves
to (e2if|2,0le,f + e2iu|0,2le,f )/

!!
2

√
. The phase factor e2if increases the

frequency of the interference fringes by a factor of two compared
with a single photon input. Generally, n-photon NOON states
exhibit an n-fold increase in this frequency, which gives such states
the best possible sensitivity to small phase shifts.

Although non-classical interference acting on an |n/2,n/2la,b
state continues to generate entangled states as n increases, these
states are not NOON states for n. 2. The four-photon |2,2la,b
input results in a state inside the interferometer of

a

b

c

d

e

f

g

h

θ

ϕ

Figure 1 | A Mach–Zehnder interferometer with the phase shift to be
measured, f, in one arm, and a controllable phase shift, u, in the other
arm. The modes are indicated by the labels a to h.

1Centre for Quantum Computer Technology, Centre for Quantum Dynamics, Griffith University, Brisbane 4111, Australia, 2Key Laboratory of Quantum
Information, University of Science and Technology of China, CAS, Hefei 230026, China, 3Institute for Quantum Computing, University of Waterloo,
Waterloo, Ontario N2L 3G1, Canada. *e-mail: H.Wiseman@griffith.edu.au; G.Pryde@griffith.edu.au
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By post-selecting on getting 
n = 2 or 4 photons, our input 
states are |Holland-Burnett). 
Unlike other such experiments, 
this is (essentially) the only 
post-selection we do. 
i.e. we keep all click-patterns: 
(0,1) and (1,0) for n = 1; 
(0,2), (1,1), and (2,0) for n = 2; 
(0,4), (1,3), (2,2), (3,1), and 
(4,0) for n = 4. 
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Single-Pass Experiments Beyond the SQL 

Why one can’t use the same state ρ each time 
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There are two 1-photon fringes: (0,1); and 
(1,0), with period 2π. This gives the SQL. 
There are two 2-photon fringes: (0,2) and (2,0) 
together; and (1,1), with period π. 
There are three 4-photon fringes: (0,4) and 
(4,0) together; (1,3) and (3,1) together; and 
(2,2). These have periods π, π/2, and π resp. 
Using only one type of state (2 or 4 photon) 
makes ab initio phase estimation impossible 
because there is no way to distinguish a phase 
φ from a phase φ + π so (δ ̆ .Φ)2 ≥ (π/2)2 

The optimal solution, for a given N, is to use 
some 1-, some 2-, and some 4-photon states. 

e.g. for N = 48, we use this N-photon 
sequence: 10×2-photon states, then 
8×1-photon states, then 5×4-photon states. 
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Single-Pass Experiments Beyond the SQL 

Why one can’t use a fixed measurement M for each ρ 
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The measurement M is defined by photon 
counting with only a single variable 
parameter, θ, the auxilliary phase shift. 
The Fisher information 

FM(φ, ρ) ≡ Fθ(φ, ρ) = F0(φ − θ, ρ) 

is very sensitive to φ − θ. 
Curve here is a fit from real 4-photon data; 
recall that sub-SQL requires F0(φ − θ, ρ) ≥ 4. 
The optimal solution, is to choose θ 
depending on φ so as to maximize F0(φ − θ). 

But φ is unknown. Therefore we need to use 
an adaptive technique, in which θ depends 
on the estimate of φ from data from states 
earlier in the N-photon sequence. 
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Single-Pass Experiments Beyond the SQL 

Nevertheless why Fisher information is still useful
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Multi-Pass Experiments Scaling at the HL 

A single-photon adaptive multipass experiment
 

p

Processor

√2
1

√2
1

Û = exp(iφn̂), 
with n̂ = 

K 
=1 pk â† âk .k k 

There is at 
most one 
photon in 
each mode k . 

Thus here 
KN = k=1 pk 

is the max. 
total number 
of photon-
passes 
through φ. 
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Multi-Pass Experiments Scaling at the HL 

First ab initio 
phase 
estimation 
experiment 
with HL 
scaling 

LETTERS

Entanglement-free Heisenberg-limited phase
estimation
B. L. Higgins1, D. W. Berry2, S. D. Bartlett3, H. M. Wiseman1,4 & G. J. Pryde1

Measurement underpins all quantitative science. A key example is
the measurement of optical phase, used in length metrology and
many other applications. Advances in precision measurement
have consistently led to important scientific discoveries. At the
fundamental level, measurement precision is limited by the num-
ber N of quantum resources (such as photons) that are used.
Standard measurement schemes, using each resource indepen-
dently, lead to a phase uncertainty that scales as 1/

ffiffiffiffi
N

p
—known

as the standard quantum limit. However, it has long been conjec-
tured1,2 that it should be possible to achieve a precision limited
only by the Heisenberg uncertainty principle, dramatically
improving the scaling to 1/N (ref. 3). It is commonly thought that
achieving this improvement requires the use of exotic quantum
entangled states, such as the NOON state4,5. These states are extre-
mely difficult to generate. Measurement schemes with counted
photons or ions have been performed with N# 6 (refs 6–15), but
few have surpassed the standard quantum limit12,14 and none have
shown Heisenberg-limited scaling. Here we demonstrate experi-
mentally a Heisenberg-limited phase estimation procedure. We
replace entangled input states with multiple applications of the
phase shift on unentangled single-photon states. We generalize
Kitaev’s phase estimation algorithm16 using adaptive measure-
ment theory17–20 to achieve a standard deviation scaling at the
Heisenberg limit. For the largest number of resources used
(N5 378), we estimate an unknown phase with a variance more
than 10 dB below the standard quantum limit; achieving this
variance would require more than 4,000 resources using standard
interferometry. Our results represent a drastic reduction in
the complexity of achieving quantum-enhanced measurement
precision.

Phase estimation is a ubiquitous measurement primitive, used for
precision measurement of length, displacement, speed, optical pro-
perties, and much more. Recent work in quantum interferometry
has focused on n-photon NOON states5–12,21, (jnæj0æ1 j0æjnæ)/

ffiffiffi
2

p
,

expressed in terms of number states of the two arms of the interfero-
meter. With this state, an improved phase sensitivity results from a
decrease in the phase period from 2p to 2p/n. We achieve improved
phase sensitivity more simply using an insight from quantum com-
puting.We apply Kitaev’s phase estimation algorithm16,22 to quantum
interferometry, wherein the entangled input state is replaced by mul-
tiple passes through the phase shift. The idea of using multi-pass
protocols to gain a quantum advantage was proposed for the problem
of aligning spatial reference frames23, and furtherdeveloped in relation
to clock synchronization24 and phase estimation25,26.

The conceptual circuit for Kitaev’s phase estimation algorithm is
shown in Fig. 1a. The algorithm yields, with K1 1 bits of precision,
an estimate west of a classical phase parameter w, where eiw is an
eigenvalue of a unitary operator U. It requires us to apply K1 1

unitaries, Up, with p5 2K, 2K2 1, …, 1, each controlled by a different
qubit. Each qubit is prepared in the state H 0ij ~ 1ffiffi

2
p 0ij z 1ijð Þ, and

the control induces a phase shift eipw on the j1æ component. The
qubits are measured sequentially in the sx basis (X), and the results
control additional phase shifts, indicated by R(a); exp(iaj0æÆ0j), on
subsequent qubits. This enables the inverse quantum Fourier trans-
form to be performed without entangling gates27. With a random
phase h on the qubits, as shown in Fig. 1a, themeasurement results on
the qubits are the binary digits of (west2 h)/2p; this ensures that the
accuracy of the estimate is independent of the value of w.

Alternatively, this independence could be obtained by using a
second classical ‘feedback’ phase h, as in Fig. 1b, which also eliminates
the need for many of the gates in Fig. 1a. This is a classical real-valued
parameter whose value is adjusted by p/p, indicated by the symbol
D(p/p), controlled by the results of measurements. The value of h
determines (as indicated by the diamond-shaped control symbol in
Fig. 1b) phase-shifts R(ph) on the qubits. Applying this to interfero-
metry, we can measure an unknown optical phase w using dual-rail
photonic qubits22. Here the operatorU induces a relative phase shiftw
each time the beam path (in one arm of the interferometer) passes
through the unknown optical phase w. The additional phase shifts
(determined by h) can be implemented using a single-pass control-
lable phase in the other arm.

If a fixed probability of error in west is allowed (that is, if the
uncertainty is quantified by a confidence interval), then the uncer-
tainty of Kitaev’s phase estimation scales as 22K (ref. 22). Because the
number of control photons is Nphot5K1 1, this scaling implies an
exponential decrease in the phase uncertainty with increasing
resources—apparently violating the Heisenberg uncertainty prin-
ciple. The correct analysis, however, is as follows. Although the cost
of implementing Up can be assumed to be essentially independent of
p in the context of quantum computation, in interferometry it
requires p applications of the phase shift, and should thus be counted
as requiring p resources25. Using this definition, the total number of
resources used is N5 2K1 12 1. Then for N? 1, the uncertainty
scales as 1/N, as in the Heisenberg limit. We note that this quantifica-
tion of resources in terms of the number of applications of the phase
shift is the relevant one for phase estimation of sensitive (for example,
biological) samples, wherein the goal is to pass as little light through
the sample as is necessary.

On the other hand, if Dwest is taken to be the standard deviation—
the usual measure of uncertainty—then Kitaev’s algorithm does not
scale as 1/N. Rather, we have shown analytically that it asymptotes asffiffiffi
2

p " ffiffiffiffi
N

p
, the same scaling as the standard quantum limit (SQL)—see

also ref. 21. The broadwings of the distribution of phase estimates are
not due to any deficiency in the estimation procedure—the quantum
Fourier transform is optimal—but rather are a consequence of the
sequence of phase shifts on the photons, 2Kw, 2K2 1w, …, w.

1Centre for Quantum Dynamics, Griffith University, Brisbane 4111, Australia. 2Centre for Quantum Computer Technology, Macquarie University, Sydney 2109, Australia. 3School of
Physics, University of Sydney, Sydney 2006, Australia. 4Centre for Quantum Computer Technology, Griffith University, Brisbane 4111, Australia.

Vol 450 | 15 November 2007 |doi:10.1038/nature06257

393
Nature   ©2007 Publishing Group

Multipasses (p) give 
fringes of period 2π/p, 
just like in p00p states. 
Thus sequences with 
different p are necessary. 
e.g. N = 390 is 6 each of 
32, 16, 8, 4, 2, 1 passes. 

Adaptive detection is 
again useful, and this 
time gives HL-scaling. 
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Multi-Pass Experiments Scaling at the HL 

Is adaptive 
detection 
necessary to 
achieve HL 
scaling from 
multi-pass 
single-
photons? 

As in the adaptive case
 
the sequences have p =
 
pk = 2k ∈ {1, 2, · · · , 2K }.
 
In the nonadaptive case
 
we find a good results by
 
repeating each pk 

M(K , k) = MK + µ(K − k) 

times, with MK = 2, µ = 3. 
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Multi-Pass Experiments Scaling at the HL 

Is adaptive 
detection 
necessary to 
achieve HL 
scaling from 
multi-pass 
single-
photons? 

T h e  o p e n – a c c e s s  j o u r n a l  f o r  p h y s i c s
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Abstract. We derive, and experimentally demonstrate, an interferometric
scheme for unambiguous phase estimation with precision scaling at the
Heisenberg limit that does not require adaptive measurements. That is, with no
prior knowledge of the phase, we can obtain an estimate of the phase with a
standard deviation that is only a small constant factor larger than the minimum
physically allowed value. Our scheme resolves the phase ambiguity that exists
when multiple passes through a phase shift, or NOON states, are used to
obtain improved phase resolution. Like a recently introduced adaptive technique
(Higgins et al 2007 Nature 450 393), our experiment uses multiple applications
of the phase shift on single photons. By not requiring adaptive measurements,
but rather using a predetermined measurement sequence, the present scheme is
both conceptually simpler and significantly easier to implement. Additionally,
we demonstrate a simplified adaptive scheme that also surpasses the standard
quantum limit for single passes.

7 Authors to whom any correspondence should be addressed.

New Journal of Physics 11 (2009) 073023
1367-2630/09/073023+14$30.00 © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft

As in the adaptive case
 
the sequences have p =
 
pk = 2k ∈ {1, 2, · · · , 2K }.
 
In the nonadaptive case
 
we find a good results by
 
repeating each pk 

M(K , k) = MK + µ(K − k) 

times, with MK = 2, µ = 3. 
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Qubit Gate Characterization Experiment and Theory 

Multipassed single photon ≡ repeated gates on qubit 

For single photon inputs, each pass through an unknown phase is 
equivalent to the application of a polarization qubit gate 

Û = exp(iφσ̂z ), 

where σ̂z = |1, 0)(1, 0| − |0, 1)(0, 1| = |H)(H| − |V )(V |. 
If we could make a QND measurement on a photon we could 
estimate φ arbitrarily accurately using a single photon. 
For many solid-state qubits QND projective read-out is feasible. 
However, adaptive measurements are slow. 
Recall our non-adaptive algorithm, with pk = 2k ∈ {1, 2, · · · , 2K }
each M(K , k) = MK + µ(K − k) times. 
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Nanoscale magnetometry using a single-spin system in diamond
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We propose a protocol to estimate magnetic fields using a single nitrogen-vacancy (N-V) center in diamond,
where the estimate precision scales inversely with time, δB ∼ 1/T , rather than the square-root of time, δB ∼
1/

√
T . The method is based on converting the task of magnetometry into phase estimation, performing quantum

phase estimation on a single N-V nuclear spin using either adaptive or nonadaptive feedback control, and the
recently demonstrated capability to perform single-shot readout within the N-V [P. Neumann et al., Science 329,
542 (2010)]. We present numerical simulations to show that our method provides an estimate whose precision
scales close to ∼1/T (T ∼ the total estimation time), and moreover will give an unambiguous estimate of the
static magnetic field experienced by the N-V. By combining this protocol with recent proposals for scanning
magnetometry using an N-V, our protocol will provide a significant decrease in signal acquisition time while
providing an unambiguous spatial map of the magnetic field.

DOI: 10.1103/PhysRevB.83.125410 PACS number(s): 81.05.ug, 07.55.Ge, 42.50.St

I. INTRODUCTION

A highly sensitive magnetic field sensor that can operate
at room temperature and has atomic spatial resolution may
revolutionize many nanotechnologies, for instance in medical
and biological technologies, advanced material sciences, spin-
tronics, and quantum computing. Toward the practical realiza-
tion of such a device, nanoscale magnetometry experiments in
solids have been realized using single nitrogen-vacancy (N-V)
centers in diamond.1,2 These experiments detect very weak
magnetic fields, ∼3 nT at kilohertz frequencies, and can locate
a nearby electronic spin with a spatial resolution of ∼5 nm
by utilizing electron spin dynamics of a defect center in
a diamond nanocrystal, as illustrated in Fig. 1. This defect
center possesses remarkable properties for magnetic sensing:
It can be individually addressed and optically polarized and
measured, and it maintains spin coherence at room temperature
for considerable periods of time.3,4 However, the current
magnetometry precision is limited by standard statistical
fluctuations, namely the shot-noise limit.5 In this limit the
precision of the magnetic field estimate scales as δB ∼ 1/

√
T ,

where T is the total time needed to acquire the estimate.
This scaling is because T/τ independent measurements

are made over a short time τ . This yields an uncertainty in
the magnetic field of5 δB ≈ (h̄/gµB)(1/

√
τT ). In principle,

if one were to use a measurement over the entire time interval
T , then one would have a measurement with uncertainty
scaling as δB ∼ 1/T . This is the best precision possible for
a measurement over this time interval and is equivalent to
the Heisenberg limit for phase measurement.6 There are two
problems preventing measurements with precision scaling as
1/T . The first is spin-spin relaxation; performing a single
measurement beyond the dephasing time T2 does not yield
an increase in precision. The second is that performing a
measurement over a longer time may result in ambiguities.
That is, the magnetic field causes the spin to rotate more than
once, and the number of rotations cannot be determined from
the measurement. Experimental advances have increased T2,
and there are proposals to extend T2 to the order of a second.7

In this work, we address the second problem, and present
a method to achieve Heisenberg-like scaling of the precision
for measurement times smaller than T2 while eliminating any
ambiguities in the estimation. This will allow faster acquisition
of a magnetic field map for a preset precision. In summary, we
adapt a more generalized quantum phase estimation algorithm
(gQPEA),8 to instead estimate the phase generated by an
unknown Z rotation of the Bloch sphere of a qubit (atomic
two level system), via Ramsey interferometry. The gQPEA
phase estimation algorithm was initially developed using the
framework of optical interferometry to estimate an unknown
phase acquired when a photon passes through a static phase
shifter, and it has been experimentally demonstrated using
linear optical methods.8,9 The protocol can make use of either
adaptive8,10 or nonadaptive6,9 controls to yield unambiguous
estimates of the phase with a precision which scales inversely
with the overall measurement time, i.e., Heisenberg-like
scaling. Our protocol makes use of single-shot measurements
(SSM) of the spin of the atomic system, and we generalize
to the case when the visibility of such measurements may be
significantly below 100%.

We numerically simulate our magnetometry protocols
under both ideal and realistic measurement conditions, taking
into account atomic decay and dephasing. In the ideal case,
when we have perfect SSM visibility, we predict that the
precision of the magnetic field estimate has better scaling
than the shot-noise limit; i.e., the precision scales as δB ∼
1/T β , 1/2 < β < 1. We describe this type of scaling as sub-
shot-noise scaling. Furthermore, we analyze the performance
of these protocols when the SSM visibility can be quite low,
and surprisingly find that sub-shot-noise scaling in the estimate
precision is still possible.

We begin by reviewing Ramsey interferometry in a two-
level system to estimate an unknown phase rotation. Section III
adapts the gQPEA to atomic systems to operate within the
Ramsey interferometry cycle. Section IV presents the results
of numerical simulations for the adaptive and nonadaptive
protocols with varying single-shot measurement visibilities.

125410-11098-0121/2011/83(12)/125410(7) ©2011 American Physical Society

This works well even for 
low-visibility fringes, for 
suitably chosen MK and µ. 
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Applying our nonadaptive algorithm in magnetometry 

High-dynamic-range magnetometry with a single
nuclear spin in diamond
G. Waldherr1*, J. Beck1, P. Neumann1, R. S. Said2,3, M. Nitsche1, M. L. Markham4, D. J. Twitchen4,
J. Twamley2, F. Jelezko1,5 and J. Wrachtrup1

Sensors based on the nitrogen-vacancy defect in diamond are
being developed to measure weak magnetic and electric fields
at the nanoscale1–5. However, such sensors rely on measure-
ments of a shift in the Lamor frequency of the defect, so an
accumulation of quantum phase causes the measurement
signal to exhibit a periodic modulation. This means that the
measurement time is either restricted to half of one oscillation
period, which limits accuracy, or that the magnetic field range
must be known in advance. Moreover, the precision increases
only slowly (as T20.5) with measurement time T (ref. 3).
Here, we implement a quantum phase estimation algorithm6–8

on a single nuclear spin in diamond to combine both high sen-
sitivity and high dynamic range. By achieving a scaling of the
precision with time to T20.85, we improve the sensitivity by a
factor of 7.4 for an accessible field range of 16 mT, or, alterna-
tively, we improve the dynamic range by a factor of 130 for a
sensitivity of 2.5 mT Hz21/2. Quantum phase estimation algor-
ithms have also recently been implemented using a single elec-
tron spin in a nitrogen-vacancy centre9. These methods are
applicable to a variety of field detection schemes, and do not
require quantum entanglement.

The basic principle of Larmor frequency-based magnetic field
sensing is Ramsey interferometry: a superposition of two appropriate
states is created and their field-dependent energy difference ismeasured
bymonitoring the evolution of the corresponding phasef / Bt, where
B is the magnetic field and t is the phase accumulation/sensing time
(Fig. 1c). A typcial measurement signal is shown in Fig. 2a. The
highest sensitivity dB is reached with the longest phase accumulation/
sensing times, t¼ T*2 (ref. 3). However, approximately 20 oscillations
have alreadyoccurred up to t¼ T*2 (that is,f! [2p/2,p/2)), which
go unnoticed when sensing only at t¼ T*2. Thus, the estimation of B
is ambiguous. To prevent this, t has to be restricted so that Bt / f[
[2p/2, p/2). This leads to an accessible field range of [2DBmax,
DBmax). As an example, a sensitivity dB¼ 4.2 nT Hz21/2 has been
demonstrated for the nitrogen vacancy (NV)4, but the field had to
be known before the measurement as B [ [231 nT, 31 nT). If this
prior information about themagnetic field is not available, estimation
of B cannot be performed. To summarize, shorter phase accumu-
lation times t lead to a broader accessible field range 2DBmax /
1/t, but at the same time reduce the sensitivity dB / 1/

!!
t

√
.

In a practical measurement application the sensing time t has to be
set by the prior knowledge of the field, and defines the accessible field
range of the sensor. By repeating such ameasurementn times, the pre-
cision is limited by shot noise tosB / 1/

!!
T

√
, whereT¼ nt is the total

sensing time. Here, we apply a recently proposed quantum phase esti-
mation algorithm8 (QPEA) to a solid-state spin. For a certain

accessible field range (16 mT in our case), this algorithm
features improved scaling of the precision with measurement time.
Effectively, the novel scheme increases the dynamic range of the
measurement (that is, DBmax/dB), and therefore features direct prac-
tical benefits for a broad range of frequency metrologies.

The NV2 centre is a favourable system for quantum engineering
and measurement techniques2,3,5 because of its optical spin polariz-
ation and readout mechanism10, long coherence times4, even at
ambient conditions, and coherent coupling to nearby nuclear
spins11,12. Its highly confined spin density allows field sensing at a
nanometre scale1. Recently, the facility for quantum non-demolition
(QND) measurements allowing single-shot readout has been added
to these features13,14. In this work, we use QND measurement to
demonstrate improved magnetic field sensing with the nitrogen
nuclear spin, following ref. 8. The NV electron spin is used to
correct for unwanted magnetic field fluctuations by optically
detected magnetic resonance15, to measure the pure statistical var-
iance of the algorithm (see Supplementary Information).

The experiment was carried out on a natural 14NV2 in isotopi-
cally pure (12C. 99.99%) chemical vapour deposition diamond.
Figure 1a shows the structure of the NV in the diamond lattice.
The magnetic moment associated with the nuclear (and electron)
spin leads to a magnetic field-dependent energy shift of the different
spin states (Fig. 1b). This Zeeman shift v¼ gnB of the spin states
can be measured by Ramsey interferometry (see Methods and
Fig. 2c) through the quantum phase f(t)¼vt. Figure 2a,b shows
the Ramsey fringes of the nuclear spin. Eventually, we can deduce
the field offset B from the measured phase.

For this approach, the precision sB of n independent measure-
ments with phase accumulation time t scales as 1/(t

!!
n

√
) (according

to the central limit theorem), corresponding to the 1/
!!
T

√
limit,

where T¼ nt. For a single measurement with phase sensing time
nt, however, we achieve sB / 1/(tn), corresponding to the 1/T
limit (Fig. 1d). Consequently, it is desirable to make nt as large
as possible for a single measurement, which, however, will make
the phase measurement ambiguous if f! [2p/2, p/2). Because
f¼ gnBt, the maximum expected magnetic field range [2DBmax,
DBmax) limits the longest phase accumulation time to

t0 ,
p

2gnDBmax
(1)

for the measurement to be unambiguous. Hence, we define t0 as
one resource.

To achieve both unambiguous field measurements and high sen-
sitivity, weighted measurements for different values of t≥ t0 are

13. Physikalisches Institut, Research Center SCOPE, and MPI for Solid State Research, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany,
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3Institut für Quanten-Informationsverarbeitung, Universität Ulm, 89081 Ulm, Germany, 4Element Six Ltd, King’s Ride Park, Ascot SL5 8BP, UK, 5Institut für
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High-dynamic-range magnetometry with a single
electronic spin in diamond
N. M. Nusran, M. Ummal Momeen and M. V. Gurudev Dutt*

Magnetic sensors capable of detecting nanoscale volumes of
spins allow for non-invasive, element-specific probing1–3. The
error in such measurements is usually reduced by increasing
the measurement time, and noise averaging the signal4,5.
However, achieving the best precision requires restricting the
maximum possible field strength to much less than the spectral
linewidth of the sensor. Quantum entanglement and squeezing
can then be used to improve precision (although they are diffi-
cult to implement in solid-state environments). When the field
strength is comparable to or greater than the spectral line-
width, an undesirable trade-off between field strength and
signal precision occurs1. Here, we implement novel phase esti-
mation algorithms6–8 on a single electronic spin associated with
the nitrogen-vacancy defect centre in diamond to achieve an
∼8.5-fold improvement in the ratio of the maximum field
strength to precision, for field magnitudes that are large
(∼0.3 mT) compared to the spectral linewidth of the sensor
(∼4.5 mT). The field uncertainty in our approach scales as
1/T0.88, compared to 1/T0.5 in the standard measurement
approach, where T is the measurement time. Quantum phase
estimation algorithms have also recently been implemented
using a single nuclear spin in a nitrogen-vacancy centre9.
Besides their direct impact on applications in magnetic sensing
and imaging at the nanoscale, these results may prove useful
in improving a variety of high-precision spectroscopy techniques.

Recently, the nitrogen-vacancy (NV) colour centre in diamond
has emerged as a promising candidate for nanoscale magnetometry
and imaging10–12, combining the precision of quantum metrology
with the robustness of solid-state nanotechnology. Important
advantages of the NV centre include operating temperatures from
4 to 300 K, stable fluorescence even in small nanodiamonds13,
long spin lifetimes14, optical initialization and readout, biological
compatibility15,16, as well as available quantum memory that can
be encoded in proximal nuclear spins17,18. Figure 1a presents the
structure of the NV centre, which comprises a substitutional nitro-
gen atom adjacent to a vacancy in the diamond lattice. The NV spin
projections ms¼ 0, 21 in the ground state, which constitute an
effective spin-1/2 system, couple to the magnetic field through
the magnetic dipole moment of the NV.

The standard measurement technique for magnetic sensing is
based on the well-known method of Ramsey interferometry4,19,20

for detecting changes in the frequency of an atomic transition.
An external magnetic field Bext shifts the transition frequency by
Dn¼ geBext , where ge≈ 28 GHz T21 is the NV gyromagnetic
ratio. Microwave pulses prepare a spin superposition state that
accumulates a phase f¼Dnt during an interaction time t. This
phase determines the probability distribution for subsequent
measurement outcomes of the spin state along some axis F
(Fig. 1b). The goal is then to obtain a phase estimator with the
highest precision (smallest phase variance) over as large a
dynamic range as possible. Here, ‘dynamic range’ refers to the

maximum field value (Bmax) that can be accurately detected with
high precision; that is, no prior information about the field is
known except that it is within this range. This would be a typical
situation in most applications of nanoscale magnetometry and
imaging, where unknown samples are being probed.

Fundamental quantum metrology considerations show that the
important resource in strategies for phase estimation is the
number of interactions of the spin with the field before measure-
ment (measurement passes), which is naturally discrete4,5. Parallel
strategies take N such spins, prepare them in classical (uncorrelated)
or quantum (correlated) states, interact with the field for a fixed time
t, and subsequently measure the spins. Serial strategies trade off the
running time of the experiment with the number of spins, with a
single spin recycled N times being a natural limit for such
approaches. In either strategy, the limiting resource can be expressed
by means of the total interaction time Tint;Nt. Standard parallel
and serial strategies at best scale with the phase uncertainty
k(Df )2l / 1/N / 1/Tint. This standard measurement sensitivity
(SMS) limit arises from the combination of two factors: the prob-
abilistic and discrete nature of quantum spin measurements and
the well-known central limit theorem for independent
measurements4,5.

Quantum parallel strategies take advantage of entanglement to
create correlations and overcome the SMS. Measurements beating
the SMS with few-particle entangled states have been demonstrated
with photons, atoms and nuclear spins in liquid solutions21–23.
However, the requisite long-lived entangled systems are challenging
to realize, especially in the solid state. Also, entanglement-based
sensing often offers no improvement in sensitivity relative to
dynamic range. Specifically, the phase accumulated by the entangled
state is typically approximately N times greater than a similar unen-
tangled state with the same number N of particles. This provides an
advantage whenever the goal is to measure small changes from a
well-known field quickly, but is a disadvantage in the accurate
estimation of an unknown field because the phase wraps around
the interval (2p, p]. In this work, we implement novel phase esti-
mation algorithms (PEAs) with single spins that simultaneously
realize both accurate field sensing and decoherence-limited
field precision.

The interaction time t mediates the conversion between the
phase and field sensitivity, and decoherence then plays an important
role for both serial and parallel strategies. In the absence of decoher-
ence, the greatest sensitivity is obtained by allowing the spin to
evolve for a time t¼ Tint prior to a single measurement, yielding a
field variance (DB)2¼ (Df )2/(get)

2 / 1/Tint
2. However, this

results in a lowered dynamic range, because of the same modulo
2p phase wrapping. The fundamental interaction time
tmin = p/geBmax is therefore chosen to avoid this ambiguity,
and the single spin must then be recycled N times. In practice,
the maximum interaction time is further limited by
decoherence, implying that tmin≤ t≤ T2. The pernicious effect of
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Qubit Gate Characterization Experiment and Theory 

A different resource: Number of read-outs.
 

If the duration τg of the gate Û is greater than or comparable to the 
read-out time τr, it makes sense to quantify resources by 

N = Ng = number of qubit-passes ∝ total time . 

However for many qubits τr » τg in which case 

Nr = number of read-outs ∝ total time 

(Apology: in the plots that follow, Nr is simply notated N.) 
Further apology: in the following I will use m (rather than p) for the 
number of coherent gate applications prior to a read-out. 
For schemes in which {m} is predetermined, nm is the number of 

Mtrials using a given m, so that Nr = m=1 nm. 
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How well can we actually do? 
If we apply the mutlipass-photon protocol presented above we 
have m = 1, 2, 4, · · · 2K and nm = 6 ∀m, so that Nr = 6(K + 1) 
while Ng = 6 × (2K +1 − 1) ≈ 6 × 2Nr/6, so that 

(δ ̆ g .Φ)2 ∝ N−2 ∝ 2−Nr/3 

AFAIK the best known scheme is the nm = 4 ∀m case of our 2007 
Nature scheme, giving 

(δ ̆ g .Φ)2 ∝ N−2 ∝ 2−Nr/2 

Is this the best possible scaling? What does the CRB say? 
Fm(φ, ψ) = m. So F can be arbitrarily large, while Nr is finite. 
Fisher information gives no lower bound on (δ ̆Φ)2 in terms of Nr 
However an informational argument does: each measurement 
yields at most one bit. At best this can halve the range of Φ, so 

π2
 
(δΦ)˘ 2 × 2−2Nr .
IL ≥ 

3 
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Qubit Gate Characterization Experiment and Theory 

What if we can’t change the measurement basis? 

All the above algorithms rely upon an auxilliary phase θ which can 
be arbitrarily set. 
In the qubit gate characterization case, it may not be possible to 
do this (e.g. it might be g, the coupling of the spin to a magnetic 
field, which is unknown). 
Therefore it is interesting to ask how well can we do without θ. 
In this case the only thing that can be adapted is m, the number of 
of gate applications prior to read-out. 
Adopting a locally optimal adaptive strategy for choosing m gives 

(δ ̆Φ)2 ∝ 2−αN , α = 0.21 ± 0.02 

and this is exponentially better than standard estimation
 
techniques. [A. Sergeevich, A. Chandran, J. Combes, S. D.
 
Bartlett, and H. M. Wiseman, Phys. Rev. A 84, 052315 (2011).] 
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Characterization of a qubit Hamiltonian using adaptive measurements in a fixed basis
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1Centre for Engineered Quantum Systems, School of Physics, University of Sydney, Sydney 2006, Australia
2ARC Centre for Quantum Computation and Communication Technology, and Centre for Quantum Dynamics,

Griffith University, Brisbane 4111, Australia
3Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
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We investigate schemes for Hamiltonian parameter estimation of a two-level system using repeated
measurements in a fixed basis. The simplest (Fourier based) schemes yield an estimate with a mean-square error
(MSE) that decreases at best as a power law ∼N−2 in the number of measurements N . By contrast, we present
numerical simulations indicating that an adaptive Bayesian algorithm, where the time between measurements
can be adjusted based on prior measurement results, yields a MSE which appears to scale close to exp(−0.3N ).
That is, measurements in a single fixed basis are sufficient to achieve exponential scaling in N .

DOI: 10.1103/PhysRevA.84.052315 PACS number(s): 03.67.−a, 03.65.Wj

I. INTRODUCTION

Efficient methods for the characterization of quantum
systems to extremely high precision are important both to
reach new regimes of physics and to build robust quantum
technologies [1,2]. One of the most fundamental characteriza-
tion tasks is the estimation of the parameters of a Hamiltonian
in a two-level system. Several previous studies [3–5] used a
method of repeatedly initializing the two-level system and then
performing measurements in a fixed basis after consecutively
longer intervals (during which the system evolves under its
Hamiltonian) and then averaging many runs. By calculating
the Fourier transform of the resulting signal and identifying
its peak, it is possible to obtain an estimate for the rate of
evolution and, thus, the desired Hamiltonian parameter.

This approach is noticeably more efficient (faster) in
practice than quantum process tomography [6], requiring only
measurements in one particular basis (as state initialization
can be done via measurement). However, it still demands a
large number of measurements for moderate accuracy. For
example, in Ref. [3], the two parameter estimation procedure
required at least 106 measurements in order to reach a joint
variance of 10−3 in the parameters being estimated. Such large
numbers of measurements can pose a problem, especially in
solid-state systems where the measurement time is typically
the slowest time scale, often many orders of magnitude longer
than the period for coherent evolution. To specifically address
such situations, we quantify resources in our estimation
schemes as N , the number of measurements used, rather
than the total evolution time as is commonly used in phase
estimation schemes using optics and assuming instantaneous
measurements [7] (however, cf. [8]). We note, however, that
our techniques could easily be modified to take into account
both the waiting time and the measurement time.

We emphasize that, unlike schemes based on the quantum
phase estimation algorithm [1,9] such as that proposed in
Refs. [8,10], we restrict our measurement to a fixed basis and
do not allow any controlling unitary dynamics. That is, our

*H.Wiseman@griffith.edu.au

schemes are limited to preparing a pure state in this fixed basis,
evolving for some time under the Hamiltonian, and measuring
in this same basis. The motivation for this restriction is simple:
In most situations, the unitary required to change bases would
be generated by the very Hamiltonian parameter that we are
attempting to estimate.

A motivating example is provided by recent experimental
progress in the development of spin qubits in semiconductor
quantum dots, specifically GaAs double dot systems where a
qubit is defined using two electron spins in a singlet or triplet
configuration [11]. With one electron in each dot, the states
|↑↓〉 and |↓↑〉 experience an energy splitting proportional to
the difference in the z component of the magnetic field, !Bz,
resulting from the hyperfine interaction with nearby lattice
nuclear spins. Because variations in !Bz are the primary
source of decoherence in these spin qubits, there has been
considerable recent interest in the measurement and control
of this nuclear magnetic field by using the spin qubit as
both a probe and feedback mechanism [12–15]. In addition,
a well-known and stable value of this field can serve as a
source of coherent quantum operations (i.e., logic gates) on
the spin qubit [14,15]. (However, one cannot use this effect
to change the measurement basis and implement a quantum
phase estimation algorithm as in Refs. [1,8,9] without first
estimating the field; thus, our requirement for fixed basis
measurements.) With the recent demonstration of single-shot
projective measurements of the spin qubit [16], parameter
estimation of !Bz in such systems is possible [15]. The system
coherently evolves on a nanosecond time scale, whereas the
measurement time is ∼10 µs [14,17,18]. (In these systems
the coherent evolution is switched off during the measurement
process.) For this estimation problem, then, we seek schemes
that minimize the number of measurements required for a
given accuracy.

In this article, we consider the performance of a range
of schemes for such a parameter estimation, using numerical
simulations. First, we demonstrate that a Bayesian approach
outperforms the Fourier estimation techniques. We show
that, while schemes using a predetermined sequence of
measurements yield a mean-square error (MSE) decreasing

052315-11050-2947/2011/84(5)/052315(5) ©2011 American Physical Society

 

 

Total Number of Samples (N)

0 10 20 30 40 50 60 70 80 90 100

M
e
a
n
 S

q
u
a
re

 E
rr

o
r

10
−5

10
−9

10
−3

10
−7

10
−1 n =N, m = 1

n =1, m = 1,2,3,...,M

Adaptive Method

For these 
non-adaptive 
schemes, 
n ≡ nm, so 
Nr = n × m. 

n = 1 is 
near-optimal 
scheme of 
this sort, with 
(δ ̆Φ)2 ∝ N−3 

r . 

Howard M. Wiseman (Griffith University) Quantum limits in phase estimation NASA QFTC, January 2012 26 / 29 



Qubit Gate Characterization Experiment and Theory 

How to best sample a periodic probability distribution, or on the accuracy of
Hamiltonian finding strategies

Christopher Ferrie,1, 2 Christopher E. Granade,1, 3 and D.G. Cory1, 4, 5

1 Institute for Quantum Computing, University of Waterloo, Waterloo, Ontario, Canada
2 Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada

3 Department of Physics, University of Waterloo, Waterloo, Ontario, Canada
4 Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada

5 Perimeter Institute for Theoretical Physics, Waterloo, Ontario, Canada
(Dated: October 17, 2011)

Projective measurements of a single two-level quantum mechanical system (a qubit) evolving under
a time-independent Hamiltonian produce a probability distribution that is periodic in the evolution
time. The period of this distribution is an important parameter in the Hamiltonian. Here, we
explore how to design experiments so as to minimize error in the estimation of this parameter.
While it has been shown that useful results may be obtained by minimizing the risk incurred by
each experiment, such an approach is computationally intractable in general. Here, we motivate
and derive heuristic strategies for experiment design that enjoy the same exponential scaling as fully
optimized strategies. We then discuss generalizations to the case of finite relaxation times, T2 <∞.

Introduction. Measurement adaptive tomography has
recently been suggested as an efficient means of perform-
ing partial quantum process tomography [11]. Little is
known about optimal protocols when realistic experimen-
tal restrictions are imposed — as opposed to the case
where one is allowed arbitrary quantum resources1. In-
deed, even in the simplest examples, not even bounds
have been given on the proposed protocols. Here, we give
analytic bounds on both non-adaptive and adaptive es-
timation protocols for a Hamiltonian parameter estima-
tion problem. Moreover, we derive estimation protocols
which asymptotically achieve these bounds. Adaptive
protocols are typically difficult to implement because a
complex optimization problem must be solved after each
measurement. We instead derive a heuristic that is easy
to implement and achieves the exponentially improved
asymptotic risk scaling of the optimal solution.

Within the NMR community, similar concerns have
motivated the examination of the use of maximum en-
tropy [1] and maximum likelihood [4] methods for ob-
taining spectra. Recently, computational power has be-
come available such as to make these methods feasible for
use in analyzing non-uniform data obtained from high-
dimensional NMR experiments [8]. These studies have
produced qualitatively similar strategies for how to best
design experiments when each sample is expensive to col-
lect.

The paper is organized as follows. First, we define
the model Hamiltonian which we want to estimate the
parameters of, along with our metric of success. Then
we give both frequentist and Bayesian lower bounds on
the risk derived from this metric. Finally, we derive
strategies which achieve the asymptotic scaling of these

1 As in the standard phase estimation protocol. See e.g. [3].

bounds.
Problem statement. The model we consider is a qubit

evolving under the Hamiltonian

H =
ω

2
σz.

Here ω is the unknown parameter whose value we want
to ascertain. We make the problem dimensionless by as-
suming ω ∈ (0, 1). An experiment consists of preparing a
single known input state |+〉, evolving under the Hamil-
tonian H for a controllable time t and performing a mea-
surement in the σx basis. This is the simplest problem
where adaptive Hamiltonian estimation can be used. We
emphasize here that we are assuming strong projective
measurements on individual copies of a quantum prepa-
ration, rather than weak measurements on physical en-
sembles such as those studied in NMR experiments.

The outcomes of the measurement we label d ∈ {0, 1},
where 0 and 1 refer to |+〉 and |−〉, respectively. An
experiment design consists of a specification of the time
t that we evolve a qubit under H before we measure.
The likelihood function for a given experiment t is then
given by the Born rule Pr(0|ω, t) =

∣∣〈+|e−iHt|+〉
∣∣2 and

Pr(1|ω, t) = 1−Pr(0|ω, t). Using our model Hamiltonian,
we can express the likelihood more simply as:

Pr(d|ω, t) = sin2
(ω

2
t
)d

cos2
(ω

2
t
)1−d

. (1)

Note that this model does not include noise. Below, we
somwhat generalize this model by including limited visi-
bility and a T2 dephasing process.

If we desire an estimate ω̂ of the true value ω, a com-
monly used figure of merit is the squared error loss:

L(ω, ω̂) = |ω − ω̂|2 .

The risk of an estimator, which a function that takes data
sets (D, T ) := ({dk}, {tk}) to estimates ω̂(D, T ), is its
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FIG. 1: The Bayes risk – the average (over a uniform prior)
mean (over data) squared error – of the strategies discussed
in the paper. Data points are at evenly spaced measurement
numbers N ∈ {16, 20, 24, . . . , 124} and the lines are linear
interpolants to guide the eye. Each data point is the av-
erage of 104 simulations. In each figure, the noise param-
eter η = 1 since its inclusion only gives a constant offset.
From top to bottom, the relaxation characteristic time is
T2 = ∞, 1010π, 104π. The thin solid lines indicate the lower
bound given by Equation (8).

achievable minima to the one given by the lower bound.
We provide the update equations in Appendix C.

Generalization to finite T2. In practice, we will have to
consider not only experimental restrictions but also noise
and relaxation processes. Processes which do not affect
the quantum state can be effectively modeled by ran-
dom bit-flip errors occurring with probability 1−η. Pro-
cesses which do affect the quantum state (decoherence)

are modeled by an exponential decay of phase coherence5

with characteristic time T2. Since the state being mea-
sured lies in the xy-plane of the Bloch sphere, this loss
of phase coherence manifests as an exponential decaying
envelope being applied to the original likelihood (1). The
model is thus fully specified by the likelihood function

Pr(0|ω, t, η, T2) =

η

(
e−

t
T2 cos2

(ω
2

t
)

+
1− e−

t
T2

2

)
+

1− η
2

.
(6)

The Cramer-Rao bound is now given by

R(ω, ω̂) ≥
(

N∑

k=1

t2kη
2 sin2(ωtk)

e
2tk
T2 − η2 cos2(ωtk)

)−1

. (7)

The Bayesian bound turns out to be very loose. A
sharper bound is given by first upper bounding each term
in the denominator to give

r(ω̂) ≥ 1

η2
∑N

k=1 t2ke−
2tk
T2

.

The noise term (or visibility) η simply gives a constant
reduction in the achievable accuracy. The relaxation
process provides a more interesting dynamic as we see
that the gains from longer times are exponentially sup-
pressed. In other words, strategies are restricted to ex-
plore tk ≤ T2. We can thus do no better than

r(ω̂) ≥ e2

Nη2T 2
2

. (8)

The adaptive strategy discussed above can be general-
ized to include noise and relaxation but the expressions
are more lengthy (see Appendix B). In Fig. 1, we present
the results of our simulations. Note that in all cases the
adaptive strategy achieves exponential scaling until the
times selected reach t = T2. At that point, the risk will
then scale linearly if the remaining measurement times
are t = T2. However, if the protocol continues to select
larger measurement times, the information gained from
those measurements will tend to zero and the risk will
remain constant.

Summary and conclusions. By using the Cramer-Rao
bound along with analytic expressions for the variance of
each posterior distribution, we have motivated a heuris-
tic method for choosing experiment designs that asymp-
totically admits exponentially small error scaling in the
number of measurements. For finite measurements, we

5 We do not include amplitude damping in our model since our
populations remain equal throughout evolution and thus T1 only
manifests as a contribution to T2.

This [arxiv:1110.3067 (13 Oct 2011)] 
reproduced many of our results 
analytically including: 

For n = N scheme (their “tk = π”) 
(δ ̆Φ)2 ∝ N−1 

r 

For n = 1 scheme (their “tk = kπ”) 
(δ ̆Φ)2 ∝ N−3 

r 

For ± our adaptive scheme, 
(δ ̆Φ)2 ∝ 2−αNr , though α ≈ 0.317. 

Also, using Fisher information, they 
gshowed for finite T2, (δ ̆ τ 

T 

2

2 .Φ)2 ; Nr 2 
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Conclusions 

Conclusions 
Phase is any parameter that gives a 2π-periodic signal, which 
turns up in many different contexts. 
Quantum mechanics bounds from below the error of phase 
estimation (in terms of different resources in different contexts). 
The Cramér-Rao bound (from Fisher information) is common, but 

The bound assumes identical measurements on identical states, 
which is not the case in many phase estimation schemes. 
In some cases (e.g. NØØN states) the (Q)CRB is never achievable 
For some resources (e.g. Nr), the CRB gives a trivial lower bound. 

Other bounds (Heisenberg, informational) apply to general 
scenarios, including sequences of different states, with adaptively 
changing measurements as needed for optimal phase estimation. 
Nevertheless for many realistic situations (e.g. with limited 
entanglement, limited number of passes, or limited coherence 
times), the minimumφ CRB is a useful lower bound on the error 
even in these more general scenarios. 
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