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When do we need QFT?

Nuclear Physics

Cosmic Rays

Accelerator Experiments

*Whenever quantum mechanical
and relativistic effects are both
significant.



Classical Algorithms

Feynman Diagrams Lattice Methods
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break down at strong cannot calculate dynamical
coupling or high precision quantities




What is the computational power of
our universe?
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A QFT Computational Problem
input: a list of momenta of
incoming particles ~. — -

output: a list of momenta of " s:
outgoing particles time t later

—emed  Larticle

il accelerator




| will present a polynomial-time quantum
algorithm to compute scattering amplitudes in
¢* -theory with nonzero mass.

¢*theory is a simple toy model, but it illustrates
some of the main difficulties of simulating QFTs

Discretizing spacetime

Preparing initial states

Measuring observables

Time evolution is the easy part (use Trotter)



+*-theory

Lagrangian density:

1 A
L= 50"90,¢ —m*¢* — =o'

For guantum simulation, we prefer Hamiltonian
formulation (equivalent):

H = [ d%z [ + (V¢)? + m*¢* + A¢*]

[¢(), m(y)] = 6D (z — y)



L attice Cutoff

To get finite answers one needs a cutoff. We use a spatial
lattice: !

H(a) = 5 Z a? [7T2 + (Vo)? + m?¢* + )\gbﬂ
el

Continuum QFT = limit of a sequence of theories on
successively finer lattices:

- —— ... continuum

m and )\ are functions of g |




After imposing a spatial lattice we have a many-
body quantum system with a local Hamiltonian

Simulating the time evolution in polynomial time is
a solved problem

Standard methods scale as N2 We can doV .)
Questions:

Convergence as ¢ — 0
How to prepare initial wavepackets
How to measure particle momenta



Convergence as a — 0
Particles of energy E have associated

h
lengthscale EC

- . hc . L
Intuition: if a K = discretization errors should be
small

We can formalize this by analyzing a sequence of
effective Hamiltonians (RG flow)



Coarse grain




Coarse grain




ow does simulation convergence as a — 07?

Answer: as a’

TODO:

Efficiently prepare initial wavepackets

Efficiently measure particle momenta



Creating a particle

o), creates a particle of momentum p and

energy w, = \/p? + m?2

We can define single-particle states in the
interacting theory by adiabatic continuation from
the free theory.

Quantum State-Preparation Algorithm:

1. Build the free vacuum (Gaussian)
2. Excite wavepackets
3. Adiabatically turn on interaction



Adiabatically Turn on Interaction

H(s) = > |n% + (V)" + m?¢” + sAg*]

e}

Use standard Trotter technique to simulate H(s)
with s slowly varying from 0 to 1

This almost works...



During all this slow time-evolution

s=0 s=1

the wavepackets propagate and broaden!



Solution: intersperse backwards time-evolutions
with time-independent Hamiltonians

This winds back the dynamical phase on each
eigenstate, without undoing the adiabatic
change of eigenbasis.
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Adiabaticity

Q. How slowly must we vary s?

A. By the adiabatic theorem, this is determined
by the energy gap against excitations. There
are two important excitation processes:

particle creation from vacuum: 7 = "phys

2
phys

p

m

one particle splits into three: o



Measurements

In the free theory, use the number operators: a}a,

Defining particle number is hard in the interacting
theory!

Adiabatically go back to the free theory and
measure the number operators using Kitaev's
phase estimation technique.



Strong Coupling

¢*-theory in 1+1 and 2+1 dimensions has phase
transition in which ¢ = —¢ symmetry is
spontaneously broken

,/ broken-symmetry
phase

Y

Near phase transition perturbation theory breaks
down and mass gap vanishes:

y 1 d=1
Mphys ~ (Ae = A) ”:{ o d=2



Strong Coupling

The only part of the quantum algorithm affected
by strong coupling is adiabatic state preparation.

mghys ()\c - )\)ZV

mY

p p

Splitting: y

Creation from vacuum: v = Mphys ~ (Ac — A)”

Complexity is polynomial in (A, — x)and p



Eventual goal:
Simulate the Standard model in BQP

In progress:
Fermions

Open problems:

Massless particles
Gauge symmetries
Phases inaccessible from free theory



Conclusion

Quantum computers can efficiently calculate
scattering amplitudes for ¢* theory in 3 or fewer
spatial dimensions.

Work remains to be done regarding more
complicated theories.
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