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Plan
 

Here: compare the efficiency of a proposed quantum 
algorithm with that of a classical algorithm for solving 
optimization and “constraint satisfaction” problems 

Question: What could we do with an eventual quantum 
computer in addition to Shor and Grover? 

Will use the Quantum Monte Carlo (QMC) Method 
to study the Quantum Adiabatic Algorithm (QAA) 
for large sizes, and compare with a classical 
algorithm (WALKSAT). 



       
  

    
      

       

Quantum Adiabatic Algorithm 
Proposed by Farhi et. al (2001) to solve hard optimization 
problems on a quantum computer. 

H(t) = [1 s(t)]HD + s(t)HP 

0 1 
HD HP(g.s.) (g.s.?)adiabatic? 

s 
HP is the problem Hamiltonian, depends on the az
 

i 

HD is the driver Hamiltonian = -h 
��
u xx - 1

� 
ii 

0 : s(t) : 1, s(0) = 0, s(T ) = 1  
T is the running time 

System starts in ground state of driver Hamiltonian. If process
 
is adiabatic (and T → 0), it ends in g.s. of problem Hamiltonian,
 
and problem is solved. MinimumT is the “complexity”.
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Quantum Adiabatic Algorithm 
Proposed by Farhi et. al (2001) to solve hard optimization 
problems on a quantum computer. 

H(t) = [1 s(t)]HD + s(t)HP 

0 1 
HD HP(g.s.) (g.s.?)adiabatic? 

s 
zis the problem Hamiltonian, depends on the aHP i
 

xxis the driver Hamiltonian = -h u - 1
HD ii 

0 : s(t) : 1, s(0) = 0, s(T ) = 1  
T is the running time 

System starts in ground state of driver Hamiltonian. If process 
is adiabatic (and T → 0), it ends in g.s. of problem Hamiltonian, 
and problem is solved. MinimumT is the “complexity”. 

Is exponential or polynomial in the problem size N?T 
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Quantum Phase Transition 

0 QPT 1 s 
Bottleneck is likely to be a quantum phase transition 
(QPT) where the gap to the first excited state is very small 
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Landau Zener Theory:
To stay in the ground

6Emin state the time needed 
2is proportional to .Emin 

s
 
Using QMC compute �E for different s: →ΔEmin
 



 
       

   
       

   

     
    

  

   

Quantum Monte Carlo 
We do a sampling of the 2N states (so statistical errors).
 

Study equilibrium properties of a quantum system by 
simulating a classical model with an extra dimension, 
imaginary time, τ, where 0 � T < 1/T. 

Not perfect, but the only numerical method available for large N.
 

We use the “stochastic series expansion” method for 
Quantum Monte Carlo simulations which was pioneered 
by Anders Sandvik. 

o

-/H Tr ( PH)n 

Z = Tre = 
 

n! 
n=0
 

Stochastically sum the terms in the series.
 



` = 64, symmetric levels

diag.
QMC

   
 

     

           
     

Examples of results with the SSE code
 
Time dependent correlation functions decay with τ as a sum of exponentials 

2 
�

(A(r )A(0)) - (A) = |(0|A|n)|2 exp[-(En - E0)r ]
n =0 

For large τ only first excited state contributes, → pure exponential decay 
3-reg MAX-2-XORSAT, N = 1283-reg MAX-2-XORSAT, N=24 
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QMC fit, 6E = 0.090
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Large size, N = 128, good quality Small size, N= 24, excellent agreement with 
diagonalization.
 data, slope of straight line → gap.
 



 
    

        
          

           

          

     
    

          

Satisfiability Problems I
 
In satisfiability problems (SAT) we ask whether there is an 
assignment of N bits which satisfies all of M logical conditions 
(“clauses”). We assign an energy to each clause such that it is 
zero if the clause is satisfied and a positive value if not satisfied. 

i.e. We need to determine if the ground state energy is 0. 

We take the ratio of M/N to be at the satisfiability threshold, and 
study instances with a “unique satisfying assignment” (USA). 
(so gap to 1st excited state has a minimum whose value indicates the complexity.) 



  
   

       
        

        
   

          
     

         
        

      
     

      
   

Satisfiability Problems II 
• Locked 1-in-3 SAT 
The clause is formed from 3 bits picked at random. The 
clause is satisfied (has energy 0) if 1 is one and the other two 
are zero. Otherwise it is not satisfied (and the energy is 1). 
• Locked 2-in-4 SAT 
Similar to 1-in-3 but the clause has 4 bits and is satisfied if 2 
of them are one. (This has bit-flip symmetry). 

“Locked” means that each bit is in at least two clauses, and 
flipping one bit in a satisfying assignment makes it unsatisfied. 

Satisfiability threshold at critical value of M/N. We work at this 
threshold, (hard, Kirkpatrick and Selman) and take instances 
with a “USA”. These seem to be a finite fraction of whole 
ensemble even for N ➝ ∞. 



  
  

     
         
       

       
      

  
      

          
  

Satisfiability Problems III 
• 3-spin model (3-regular 3-XORSAT) 

3-regular means that each bit is in exactly three clauses. 3-
XORSAT means that the clause is satisfied if the sum of the 
bits (mod 2) is a value specified (0 or 1) for each clause. 
In terms of spins σz (= ±1) we require that the product of the 
three σz’s in a clause is specified (+1 or -1). 

M 1 
Oz= 

  
1 - Ja O

z Oz
 

HP 2 a,1 a,2 a,3
a=1 

(Is at SAT threshold.) 
This SAT problem can be solved by linear algebra (Gaussian 
elimination) and so is in P. Nonetheless we will see that it is 
very hard for heuristic algorithms (quantum and classical). 
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Locked 1-in-3 
Plots of the median minimum gap 

0.1
 0.1

m
ed

ia
n 
6

E m
in

 

r 2 / ndf = 1.35 
Q = 0.26 

0.16 exp(-0.042 N) 

10  100 

r 2 / ndf = 18.73
Q = 3.82e-12 

5.6 N-1.51

 0.01

 0.01


 0.001
 10  20  30  40  50  60  70  80  90  100
 

N N
 

Exponential fit Power law fit 

Clearly the behavior of the minimum gap is exponential
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r 2 / ndf = 1.58 
Q = 0.19 

0.32 exp(-0.063 N) 
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0.1
r 2 / ndf = 5.80 
Q = 5.86e-04 

8.6 N-1.55
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Exponential fit Power law fit 

The exponential fit is much better.
 



 
      

     

3-Reg 3-XORSAT
 
Exponential (i.e. log-lin) plot of the median minimum gap
 

3-reg XORSAT 
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diag 
QMC 

0.22 exp(-0.080 N) 
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Clearly the minimum gap is exponential, even for small N
 



     
 

         
     

           
     

     
       

        

        
        

      

 

Comparison with a classical algorithm,

WalkSAT: I
 

WalkSAT is a classical, heuristic, local search algorithm. It is a
 
reasonable classical algorithm to compare with QAA.
 
We have compared the running time of the QAA for the three
 
SAT problems studied with that of WalkSAT.
 
For QAA, Landau-Zener theory states that the time is 

proportional to 1/(ΔEmin)2 (neglecting N dependence of matrix 

elements).
 
For WalkSAT the running time is proportional to number of “bit
 
flips”.
 
We write the running time as proportional to exp(µN).
 
We will compare the values of µ among the different 
models and between QAA and WalkSAT. 



  
 

3-XORSAT,  158 exp(0.120 N)
2-in-4,  96 exp(0.086 N)
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Comparison with a classical algorithm,

WalkSAT: II
 

WalkSATQAA
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1-in-3, 0.16 exp(-0.042 N) 
2-in-4, 0.32 exp(-0.063 N) 

3-XORSAT, 0.22 exp(-0.080 N) 
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Exponential behavior for both QAA and WalkSAT
 

The trend is the same in both QAA and WalkSAT.
 
3-XORSAT is the hardest, and locked 1-in-3 SAT the easiest.
 



     
 

   
  

 

       
    

         
    
      

Comparison with a classical algorithm,

WalkSAT: III
 

Model QAA WalkSAT Ratio 

0.084(3) 0.0505(5) 1.661-in-3 

0.126(7) 0.0858(8) 1.472-in-4 
Values of µ 
(where time ~ 

0.159(2) 0.1198(4) 1.323-XORSAT exp[µ N]). 

These results used the simplest implementation of the QAA
 
for instances with a USA. 

Interesting to also study random instances to see if they also
 
have exponential complexity in QAA.
 
Also look for better paths in Hamiltonian space.
 



  
       

     
      

    
     

    
  

     
    

    
    

    

      
     

3-Reg MAX-2-XORSAT: I
 
We have also studied one “MAX” (i.e. optimization) problem. 

MAX means we are in the UNSAT phase, and want to find the 
configuration with the least number of unsatisfied clauses. 
The “2” in 2-XORSAT means each clause has 2 bits. “Replica” 
theory indicates that 2-SAT-like problems are different from K-SAT problems for K > 2.
 

We take the “antiferromagnet” 
version, i.e. the energy is zero if 
the bits are different (otherwise 
it is 1). 
3-Regular means that it bit is in 
three clauses, i.e. has 3 
“neighbors” connected to it. The 
connected pairs are chosen at 
random. 

Note: there are large loops 

i 
3 

1 2 



  
     

  
     

        
      

    

 
         

     
     

    

3-Reg MAX-2-XORSAT: II 
The problem Hamiltonian is (i.e. antiferro. on random graph)
 

1 
HP = 

  
1 + (z (z

 


i j2
(i,j)

Note the symmetry under a
zi
 > -a
zi
,
 Vi
 

Cannot form an “up-down” antiferromagnet because of loops 

of odd length. In fact, it is a “spin glass”. 
Adding the driver Hamiltonian there is a quantum phase 
transition at s = s * above which the symmetry is 
spontaneously broken. 
“Cavity” calculations (Gosset) find s*≅0.36 
So far, have just investigated the problem near s *. Also just 
considered instances with a “unique satisfying 
assignment” (apart from the degenerate state related by 
flipping all the spins). 
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3-Reg MAX-2-XORSAT: III 
Median minimum gap for intermediate values of s 

3-reg MAX-2-XORSAT3-reg MAX-2-XORSAT 

r 2 / ndf = 0.56 
Q = 0.57 

0.29 exp(-0.014 N) 

10  100 

power-law fit 
r 2 / ndf = 4.47 
Q = 1.29e-03 

3.60 N-0.866
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Power-law fit Exponential fit omitting 1st 2 points 
Quantum Phase transition is at s ≃ 0.36 (“cavity” method).
 
Data shows the minimum gap in region 0.36 ≤ s ≤ 0.50. 
Looks exponential at large sizes. 



  
      

        
      

      
         

        

0.00 

3-Reg MAX-2-XORSAT: IV
 
ga
p


 

Small sizes have just one minimum, near s = 0.36. Larger 
sizes have additional, deeper minima at larger s, in the “spin 
glass” phase. Figures below are for two instances of N = 160. 
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Previous slide shows data for the deepest minimum in the 
range 0.36 ≤ s ≤ 0.50. Next slide shows data for the 
minimum closest to 3 = 0.36 (if there is more than 1). 
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3-Reg MAX-2-XORSAT: V
 
Median minimum gap near s 0.36 (the quantum critical point)
 

3-reg MAX-2-XORSAT (near 0.36) 3-reg MAX-2-XORSAT (near 0.36) 
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power-law fit 
r 2 / ndf = 0.15 
Q = 0.96 
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r 2 / ndf = 4.15 
Q = 0.02 

0.26 exp(-0.011 N) 
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N N
 

Power-law fit Exponential fit omitting 1st 2 points
 

The data close to the critical point seems to be power-law, 
at least for this range of sizes. 



     
   

      
     

     
          

      
    

         
         

  
    

 

Conclusions
 
• Simple application of QAA gives exponentially small gaps 

for SAT problems with a USA. 
• An optimization problem, MAX-2-SAT, seems to have 

polynomial gaps near the quantum critical point, but 
exponentially small gaps at larger s (in the spin glass phase) 
• Need to see if the exponentially small gap can be removed 

by 
• repeatedly running the algorithm with different random 

values for the transverse fields (and costs). 
• trying to find a clever way to optimize the path in 

Hamiltonian space “on the fly” during the simulation to 
increase the minimum gap. 
• considering random instances rather than instances with 

a USA. 


