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Quantum computers promise to accelerate some kinds of calculations in a remarkable manner. But as in present-day classical computing, hardware
only half the story: efficiency requires development of appropriate algorithms, such as the fast Fourier transform.

To apply a quantum computer to a broad class of problems, general-purpose algorithms are needed. One such method is the quantum adiabatic
algorithm, in which the problem to be solved is coded into a Hamiltonian A One prepares the quantum computer in the ground state of a reference
Hamiltonian 4 and then has it evolve under a time-dependent Hamiltonian /A7) that gradually switches from 4 to 4. If the evolution is slow enough
(“adiabatic”) the system ends up in the ground state of 4, which contains information about the desired solution.

In a paper in Physical Review E, Itay Hen and Peter Young of the University of California, Santa Cruz, show that “slow enough” may be very slow inc
The reason is that the time required for adiabatic evolution depends inversely on the gap in energies between the ground and first excited states of 4
Using computer simulations, Hen and Young show that for three classes of logic problems, the scaling of the gap is such that the computational time
be expected to grow exponentially with the size of the problem. The authors suggest that it might be possible to optimize the evolution of A7) to avoi
bottleneck associated with a vanishing gap. — Ron Dickman
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Plan

Question: What could we do with an eventual quantum
computer in addition to Shor and Grover?

Here: compare the efficiency of a proposed quantum
algorithm with that of a classical algorithm for solving
optimization and “constraint satisfaction” problems

Will use the Quantum Monte Carlo (QMC) Method
to study the Quantum Adiabatic Algorithm (QAA)

for large sizes, and compare with a classical
algorithm (WALKSAT).




Quantum Adiabatic Algorithm

Proposed by Farhi et. al (2001) to solve hard optimization
problems on a quantum computer.

H(t) = |1 —s(t)|[Hp + s(t)Hp

Hp (gs.) adiabatic? Hp(gs.?)
—— 1
0 1 S
Hp is the problem Hamiltonian, depends on the o
Hp is the driver Hamiltonian = —h z:(a": — 1)

0 <s(t) <1, s(0) = 0, s(T) =
7 is the running time
System starts in ground state of driver Hamiltonian. If process

is adiabatic (and T — 0), it ends in g.s. of problem Hamiltonian,
and problem is solved. Minimum 7 is the “complexity”.
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Quantum Adiabatic Algorithm

Proposed by Farhi et. al (2001) to solve hard optimization
problems on a quantum computer.

H(t) =11 s(t)|Hp + s(t)Hp

Hp (gs.) adiabatic? H p(gs.?)
-t é—>
0 1 S

Hp is the problem Hamiltonian, depends on the o
‘Hp is the driver Hamiltonian = —h oy —1
0 <s(t) <1, s(0) = 0, s(7) =1

7 is the running time
System starts in ground state of driver Hamiltonian. If process

is adiabatic (and T — 0), it ends in g.s. of problem Hamiltonian,
and problem is solved. Minimum 7 is the “complexity”.

Is 7 exponential or polynomial in the problem size N?



Quantum Phase Transition
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Bottleneck is likely to be a quantum phase transition
(QPT) where the gap to the first excited state is very small
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Landau Zener Theory:
To stay in the ground

AE i state the time needed
is proportional to AE 2

min
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Bottleneck is likely to be a quantum phase transition
(QPT) where the gap to the first excited state is very small

Landau Zener Theory:
To stay in the ground

AE i state the time needed
IS proportional to AF

2
min

S
US|ng QMC COmpu’[e AE fOI' diﬂ:erent S. — AEmin



Quantum Monte Carlo

We do a sampling of the 2" states (so statistical errors).

Study equilibrium properties of a quantum system by

simulating a classical model with an extra dimension,
imaginary time, t, where 0 < 7 < 1/T.

‘Not perfect, but the only numerical method available for large N.

We use the “stochastic series expansion” method for
Quantum Monte Carlo simulations which was pioneered
by Anders Sandvik.

7 = Tre PH = Z ( ? )
— n!

Stochastically sum the terms in the series.



Examples of results with the SSE code

Time dependent correlation functions decay with T as a sum of exponentials

(A(T)A(0)) — (A)? = > [(0|A|n)|* exp[—(En — Eo)7]

nF#0
For large T only first excited state contributes, — pure exponential decay
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Small size, N= 24, excellent agreement with Large size, N = 128, good quality

diagonalization. data, slope of straight line — gap.



Satisfiability Problems I

In satisfiability problems (SAT) we ask whether there is an
assignment of N bits which satisfies all of M logical conditions
(“clauses”). We assign an energy to each clause such that it is
zero If the clause is satisfied and a positive value if not satisfied.

We take the ratio of M/N to be at the satisfiability threshold, and

study instances with a “unique satisfying assignment” (USA).
(so gap to 1st excited state has a minimum whose value indicates the complexity.)



Satisfiability Problems II

e Locked 1-in-3 SAT
The clause is formed from 3 bits picked at random. The
clause is satisfied (has energy 0) if 1 is one and the other two
are zero. Otherwise it is not satisfied (and the energy is 1).

e | ocked 2-in-4 SAT
Similar to 1-in-3 but the clause has 4 bits and is satisfied if 2
of them are one. (This has bit-flip symmetry).

“Locked” means that each bit is in at least two clauses, and
flipping one bit in a satisfying assignment makes it unsatisfied.

Satisfiability threshold at critical value of M/N. We work at this
threshold, (hard, Kirkpatrick and Selman) and take instances
with a "USA”. These seem to be a finite fraction of whole
ensemble even for N — «.



Satisfiability Problems III

* 3-spin model (3-regular 3-XORSAT)
3-regular means that each bit is in exactly three clauses. 3-
XORSAT means that the clause is satisfied if the sum of the
bits (mod 2) is a value specified (0 or 1) for each clause.
In terms of spins 0% (= £1) we require that the product of the
three o%'s in a clause is specified (+1 or -1).
dalgy |
Hp = ; . (1= JaoZ,0%,0% )
(Is at SAT threshold.)
This SAT problem can be solved by linear algebra (Gaussian
elimination) and so is in P. Nonetheless we will see that it is

very hard for heuristic algorithms (quantum and classical).



Locked 1-In-3

Plots of the median minimum gap
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Clearly the behavior of the minimum gap is exponential




Locked 2-in-4

Plots of the median minimum gap
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3-Reg 3-XORSAT

Exponential (i.e. log-lin) plot of the median minimum gap
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Clearly the minimum gap is exponential, even for small N




Comparison with a classical algorithm,
WalkSAT: I

WalkSAT is a classical, heuristic, local search algorithm. It is a
reasonable classical algorithm to compare with QAA.

We have compared the running time of the QAA for the three
SAT problems studied with that of WalkSAT.

For QAA, Landau-Zener theory states that the time is

proportional to 1/(AEmin)? (neglecting N dependence of matrix
elements).

For WalkSAT the running time is proportional to number of “bit
flips”.
We write the running time as proportional to ‘exp(p N).‘

We will compare the values of y among the different
models and between QAA and WalkSAT.




Comparison with a classical algorithm,
WalkSAT: 11
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Exponential behavior for both QAA and WalkSAT

The trend is the same in both QAA and WalkSAT.
3-XORSAT is the hardest, and locked 1-in-3 SAT the easiest.




Comparison with a classical algorithm,
WalkSAT: 111

WalkSAT | Ratio

| Model |QAA

1-in-3  |0.084(3)| 0.0505(5) | 1.66

-1n- 0.126(7)| 0.085 1.47
2-in-4 (7) 558(8) Values of p

(where time ~
3-XORSAT |0.159(2)| 0.1198(4) 1.32 exp[u NJ).

These results used the simplest implementation of the QAA
for instances with a USA.

Interesting to also study random instances to see if they also
have exponential complexity in QAA.

Also look for better paths in Hamiltonian space.




3-Reg MAX-2-XORSAT: 1

We have also studied one "MAX" (i.e. optimization) problem.

MAX means we are in the UNSAT phase, and want to find the
configuration with the least number of unsatisfied clauses.

The “2" In 2-XORSAT means each clause has 2 bits. “Replica”
theory indicates that 2-SAT-like problems are different from K-SAT problems for K > 2.

We take the "antiferromagnet”
version, i.e. the energy is zero if
the bits are different (otherwise
itis 1).

3-Regular means that it bit is In
three clauses, i.e. has 3
“neighbors™ connected to it. The

connected pairs are chosen at
random.

Note: there are large loops



3-Reg MAX-2-XORSAT: 11

The problem Hamiltonian is (i.e. antiferro. on random graph)

1
He =Y (1+070])
(2,3)
Note the symmetry under o; — —o;, Vi

Cannot form an “up-down” antiferromagnet because of loops
of odd length. In fact, it is a "spin glass”.

Adding the driver Hamiltonian there is a quantum phase
transition at s = s” above which the symmetry is
spontaneously broken.

“Cavity” calculations (Gosset) find s'=0.36

So far, have just investigated the problem near s’. Also just
considered instances with a “unique satisfying
assignment” (apart from the degenerate state related by
flipping all the spins).
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3-Reg MAX-2-XORSAT: 111

Median minimum gap for intermediate values of s
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Quantum Phase transition is at s = 0.36 (“cavity” method).

Data shows the minimum gap in region 0.36 < s < 0.50.
Looks exponential at large sizes.




3-Reg MAX-2-XORSAT: 1V

Small sizes have just one minimum, near s = 0.36. Larger
sizes have additional, deeper minima at larger s, in the “spin
glass” phase. Figures below are for two instances of N = 160.
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Previous slide shows data for the deepest minimum in the
range 0.36 < s < 0.50. Next slide shows data for the
minimum closest to 3 = 0.36 (if there is more than 1).



3-Reg MAX-2-XORSAT: V

Median minimum gap near s 0.36 (the quantum critical point)
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The data close to the critical point seems to be power-law,
at least for this range of sizes.




Conclusions

e Simple application of QAA gives exponentially small gaps
for SAT problems with a USA.

* An optimization problem, MAX-2-SAT, seems to have
polynomial gaps near the quantum critical point, but
exponentially small gaps at larger s (in the spin glass phase)

* Need to see if the exponentially small gap can be removed
by
e repeatedly running the algorithm with different random
values for the transverse fields (and costs).

* trying to find a clever way to optimize the path in
Hamiltonian space “on the fly” during the simulation to
iIncrease the minimum gap.

e considering random instances rather than instances with
a USA.



