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"I argue that all progress, both theoretical and practical has resulted 
from a single human activity: the quest for what I call good 
explanations." 

David Deutsch, The Beginning of Infinity: Explanations That Transform 
the World, 2011 



"The field of artificial (general) intelligence has made no progress 
because there is an unresolved philosophical problem at its heart: we 
do not understand how creativity works." 

David Deutsch, The Beginning of Infinity: Explanations That Transform 
the World, 2011 



Training a Binary Classifier
 



Training a binary classifier
 



Binary Classifier
 

x  → y = Hwww (x) 

with x ∈ RM , y ∈ {−1,1} and www ∈ RM 



Many machine learning methods formulate training as 
optimization problem 

�	 Goal is to form classifier: y = Hwww (x) 
that has minimal generalization error 

�	 Given a set of S training examples {(xs,ys)|s = 1, . . . ,S}
�	 Training: wwwopt = argminwww (L(www)+ R(www)) 

�	 Loss L(www ) controls how well the classifier separates the classes 

�	 Regularization R(www) controls the complexity of the classifier 



Regularization
 

From Bishop, Pattern Recognition and Machine Learning, 2006
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Natural choices of loss and regularization render training 
formally NP-hard 

For computational efficiency typically a convex objective 
L(www)+ R(www) is constructed 
But that comes at a cost 

Convex losses are not as robust to incorrectly labeled examples 
Solutions obtained with convex regularization are not as sparse 
Indication that tighter generalization bounds can be obtained with 
non-convex losses 
Minimum of objective function does not correspond to minimal 
training error 
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Emboldened by emerging quantum hardware ...
 

We studied non-convex versions of L(www) and R(www) rendering the 
problem formally NP hard 

Treated training as an integer programe working with weights www 
of low bit depth 
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Adiabatic quantum optimization (AQO)
 

8

gmin

H(t): slowly varying Hamiltonian for evolution from t = 0 to t = T 

H(0) = HB : initial Hamiltonian with known and easily preparable 
ground state 

H(T ) = HP : Hamiltonian whose ground state encodes the 
solution to a given instance of an optimization problem 

i d |ψ(t)) = H(t)|ψ(t))dt 

System remains in ground state during quantum evolution: 
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Implementation of AQO in the D-Wave architecture
 

D-Wave implements the Ising model in hardware: 

σ
(j) hi σ

(i)HIsing = ∑Jij σz 
(i) 

z + ∑ z 
i,j i 

Ji,j are coupling strengths between pairs of qubits. hi are biases 
of individual qubits. σz are Pauli matrices. 

Finding the ground state of HIsing amounts to solving a QUBO 

*www = argmin 
{

www 'Qwww
}

www 

Equivalent to Weighted MAX-2-SAT 

Simplest many body system! 



Illustration of computation in D-Wave processor 
Qubits connected via Chimera graph 
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Linear binary classifier
 

� 
N 

� 

y = Hwww (x) = sign ∑ wi hi (x)+ b 
i=1 

x ∈ RM : input patterns to be classified 

y ∈ {−1,1}: output of the classifier 

hi : x  → {−1,+1}: weak classifiers 

wi ∈ [0,1]: set of weights to be optimized 

b ∈ R is the bias 

H(x): strong classifier 
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Weights with low bit depth are sufficient, are even beneficial 
Argument why weights with low bit depth are sufficient 

Each training example creates hyper plane in weight space 
Those create solution regions 
As long as each region contains a least one vertex of the hyper 
lattice we are good 
Lower bound: bits ≥ log2(f )+ log2(e) − 1 

Details in arXiv: quant-ph/0811.0416 
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Training with Convex Loss and Non-Convex Regularization
 

L(w) = ∑S
s=1 Lsquare(ms) 

Lsquare(ms) = (ms − 1)2
 

T
ms = ys 

(
w xs + b

) 
is the margin of example s 

R(w) = λ I w I0 

O(N) qubits are spent representing the weights and threshold 

Margin
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Efficient use of qubits allows for flexible (heuristic) 
extensions 

Assume first round of optimization yields 
T 

y = sign
 ∑
wtht (x)+ b 
t=1 

Assume T < Q 

Re-run optimization by adding new weak classifiers 
{hi (x)|i = 1, . . . ,Q − T } selected via boosting 

If large classifier is needed with T > Q 

Freeze weights obtained in previous optimization rounds and 
concatenate⎛ ⎞ 

Tprev ⎜⎜ wt ht (x)+ 
Q 

∑ wt ht (x)+ b
⎟⎟⎟⎠ ∑
y = sign⎜⎝ t=1 t=1  oz  

frozen 

Details in arXiv: quant-ph/0912.0779 



Dealing with Outliers
 



Convex losses are sensitive to label noise
 

Bayes Classifier

Trained with Square Loss



Loss functions
 

sample



Non-monotonous relationship between objective value and 
training error 
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Figure 1: Relationship between training error and inverse objective value produced by minimizing
square loss on several different instances of a real-world training problem (OCR in photos, 10200
dimesnions, 38924 examples, 12 classes). An adequate loss function should generally be decreasing
categorical error as it approaches global minimum (top plots). Unfortunately, the opposite effect
(bottom plots) can often be observed when working with convex losses.

not directly control model sparsity. Ding and Vishwanathan [?] and Masnadi-Shirazi et al. [?] took
these lessons and independently studied two different non-convex but seemingly well behaved types
of loss functions. Bottou et al. [?, ?] also explored non-convexity studying SVMs with ramp loss,
but their focus was on achieving sparser sets of support vectors and speed of training rather than
improved accuracy and robustness of the constructed classifier.

In the present work we take further the journey into the world of non-convexity. We report on exper-
iments to train with non-convex objectives using discrete optimization in a formulation adapted to
take advantage of emerging hardware that performs adiabatic quantum computation (AQC). AQC,
first proposed in [?], is a quantum computing model with good prospects for scalable and practically
useful hardware implementation. Numerical studies of its suspected computational superiority over
classical computing have repeatedly given encouraging results (e.g. [?, ?, ?]). Significant invest-
ments are underway by the Canadian company D-Wave to develop a hardware implementation. A
series of rigorous studies of the quantum mechanical properties of the D-Wave processors, culmi-
nating in a recent Nature publication [?], have increased the excitement in the quantum computing
community for this approach. This was further fueled by news of a successful collaboration with
Google [?] and of Lockheed Martin purchasing an adiabatic quantum computer. It should be noted
that the training formulation we suggest here is a good format for AQC independently of D-Wave’s
efforts since it can be physically realized as the simplest multi-qubit configuration possible—an Ising
system [?]. For machine learning purposes, AQC can be regarded as a black-box discrete optimiza-
tion engine that accepts any problems formulated as quadratic unconstrained binary optimization
(QUBO).

The paper is organized as follows: Section ?? formulates the classification problem, defines q-loss
and discusses the intuition behind it. In Section ?? we motivate the use of weights with low bit-
depth. Section ?? defines the algorithm that we use for optimizing this non-convex loss by means of
discrete optimization. In Section ?? we present our experimental results, and Section ?? concludes
with an overview and discussion of the remaining steps that need to be taken for making q-loss fully
compatible with emerging quantum hardware. Data summary and details about our experiments can
be found in the supplementary material.

2 Training a binary classifier with q-loss

We study a binary classifier of the form

y = sign
(
w′w′w′xxx+ b

)
, (1)

where xxx ∈ RN is an input pattern to be classified, y ∈ {−1, 1} is the label associated with xxx,
www ∈ [−1, 1]N is a vector of weights to be optimized,w′w′w′ is the transpose ofwww, and b ∈ R is the bias.

Training, i.e. the process of choosing www and b, proceeds by simultaneously minimizing two terms:
a loss function, L(www, b), which estimates the error that any candidate classifier causes over a set

2
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Training with Non-Convex Loss and Convex Regularization
 

L(w) = ∑S
s=1 Lq (ms) 

Lq (ms) = min
(
(1 − q)2 ,(max (0,1 − ms))

2
) 

R(w) = λ I w I2 

In addition to qubits needed to represent w and b we need O(S) 
ancillary qubits to represent non-convex loss! 



Numerical experiments: non-convex regularization
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AdaBoost
QP 2 Algorithm with Fixed Dictionary
Outer Loop Algorithm Q=64
Outer Loop Algorithm Q=128
Outer Loop Algorithm Q=256

 AdaBoost Outer Loop 
Q = 64 

Outer Loop 
Q = 128 

Outer Loop 
Q = 256 

Test Error 0.258 ± 0.006 0.254 ± 0.010 0.249 ± 0.010 0.246 ± 0.009 

Weak Classifiers 257.8 ± 332.1 116.8 ± 139.0 206.1 ± 241.8 356.3 ± 420.3 

Reweightings 658.9 ± 209.3 130.8 ± 65.3 145.6 ± 65.5 159.8 ± 63.7 

Training Error 0.038 ± 0.054 0.185 ± 0.039 0.170 ± 0.039 0.158 ± 0.040 

Outer Loops  11.9 ± 5.0 12.2 ± 4.6 12.6 ± 4.4 
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Improved generalization is expected from 
Vapnik-Chernovenkis theory 

Vapnik-Chernovenkis dimension: 

VCH = 2(VC{hi } + 1)(T + 1) log2(e(T + 1)) 

H(x) = ∑T
t=1 ht (x) 

VC{hi } is the VC dimension of dictionary 

2 1Weak L0-norm regularization with λ < N + N2 produces classifier 
with lower VC bound while not increasing the training error 
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Hardware experiments: Training a detector with D-Wave’s 
hardware 
Car detector 

Detect cars in images 

Training data: 20,000 images with city street scenes 

Calls to quantum hardware with 52-variable optimization 
problems 

NIPS Demo 2009 



Numerical experiments: non-convex loss
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Numerical experiments: non-convex loss
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Training with low-precision discrete weights yields significant 
levels of sparsity 



Challenges mapping to D-Wave hardware
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Underexplored opportunity 
Use D-Wave hardware as a sampling engine 

Many machine learning methods are based on sampling from a
 
probability distribution.
 

Non-zero temperature gives Boltzmann distribution:
 

exp(−β E(sss))
P(sss) = 

Z 

Open quantum systems analysis: How does the probability 
distribution look if the adiabatic condition is violated? 

Native hardware mode is sampling! 
Approximate solutions by AQO not well studied 

But post-PCP-theorem work indicates that approximate solutions 
can be used to optimally solve NP-hard problems in polynomial 
time (Dickson and Amin’11; Zuckerman, STOC’06) 
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Summary
 

Non-convex training of a binary classifier can be mapped to a 
QUBO format amenable to quantum optimization at "negative 
translation cost" 

Lower generalization error 
More compact classifiers 
Can better cope with outliers 
Less training cycles (when using boosting) 

Experiments underway to run problem instances on D-Wave One 
quantum computer 
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