

The quantum query complexity

of read-many formulas

Andrew Childs Shelby Kimmel Robin Kothari

Waterloo MIT Waterloo

Boolean formulas

x1 x3

x2

_

x3

^
^

¬

¬

x1

Boolean formulas

x1
x1

x2

_

x3

^
^

¬

¬

x3

A formula is read-once if every input appears at most once.

x2

_

x3

^
^

x4 x5

¬

¬

x1

Evaluating read-once formulas

Problem: Given a black box for x 2 {0, 1}n, evaluate f(x) , where f is a
fixed read-once formula

Evaluating read-once formulas

Problem: Given a black box for x 2 {0, 1}n, evaluate f(x) , where f is a
fixed read-once formula

Upper bounds:
p

• Grover 96: O(n) for OR

• Buhrman, Cleve,Wigderson 98: Õ(
p
n) for balanced, constant-depth
 p

• Høyer, Mosca, de Wolf 03: O(n) for balanced, constant-depth
1

• Farhi, Goldstone, Gutmann 07:
 n
2
+o(1)
 for balanced, binary
 p
• Ambainis, Childs, Reichardt, Špalek, Zhang 07: O(n) for

1+o(1) in general
 approximately balanced formulas,
 n
2
p

• Reichardt 11: O(n) for any formula

Lower bound:
p

• Barnum, Saks 04: ⌦(n)

Formula size

The size S of a formula is its total number of inputs, counted with
multiplicity.

S = 5

x1

_

^
^

¬

¬
n = 3

x2 x3
x1 x3

Every Boolean function can be computed by some formula. The
formula size is a natural complexity measure.

Evaluating read-many formulas

The optimal read-once formula evaluation algorithm gives an upper p
bound of O(S) for general formulas, but this can be suboptimal for
read-many formulas.

Evaluating read-many formulas

The optimal read-once formula evaluation algorithm gives an upper p
bound of O(S) for general formulas, but this can be suboptimal for
read-many formulas.

Trivial example: x1 _ x̄1 _ x2 _ x̄2 _ · · · _ xn _ x̄n = 1

S = 2n but no queries are required to evaluate

Evaluating read-many formulas

The optimal read-once formula evaluation algorithm gives an upper p
bound of O(S) for general formulas, but this can be suboptimal for
read-many formulas.

Trivial example: x1 _ x̄1 _ x2 _ x̄2 _ · · · _ xn _ x̄n = 1

S = 2n but no queries are required to evaluate

Nontrivial example: Graph collision.
Fix an n-vertex graph. Given a black box for x 2 {0, 1}n . Is there
an edge (v,w) of the graph with xv = xw = 1?

Evaluating read-many formulas

The optimal read-once formula evaluation algorithm gives an upper p
bound of O(S) for general formulas, but this can be suboptimal for
read-many formulas.

Trivial example: x1 _ x̄1 _ x2 _ x̄2 _ · · · _ xn _ x̄n = 1

S = 2n but no queries are required to evaluate

Nontrivial example: Graph collision.
Fix an n-vertex graph. Given a black box for x 2 {0, 1}n . Is there
an edge (v,w) of the graph with xv = xw = 1?

2/3)Upper bound of O(n for any graph [Magniez, Santha, Szegedy
1/2)05]. Best lower bound for any particular graph is ⌦(n .

Evaluating read-many formulas

The optimal read-once formula evaluation algorithm gives an upper p
bound of O(S) for general formulas, but this can be suboptimal for
read-many formulas.

Trivial example: x1 _ x̄1 _ x2 _ x̄2 _ · · · _ xn _ x̄n = 1

S = 2n but no queries are required to evaluate

Nontrivial example: Graph collision.
Fix an n-vertex graph. Given a black box for x 2 {0, 1}n . Is there
an edge (v,w) of the graph with xv = xw = 1?

2/3)Upper bound of O(n for any graph [Magniez, Santha, Szegedy
1/2)05]. Best lower bound for any particular graph is ⌦(n .

Can be expressed by a simple formula:
 _
xv ^ xw n inputs

2)edges (v, w) size S = 2m = O(n

More parameters

To get nontrivial bounds for read-many formula evaluation, we must
take other properties into account.

More parameters

To get nontrivial bounds for read-many formula evaluation, we must
take other properties into account.

Gate count G: Number of AND and OR gates in the formula
(Note that G < S : worst case is a binary tree, with G = S � 1)

More parameters

To get nontrivial bounds for read-many formula evaluation, we must
take other properties into account.

Gate count G: Number of AND and OR gates in the formula
(Note that G < S : worst case is a binary tree, with G = S � 1)

Depth: Length of a longest path from the output to an input (not
counting NOT gates)

Results

The quantum query complexity of evaluating a formula with n inputs,
 p
size S, and G gates is O(min{n, S, n1/2G1/4}).

Results

The quantum query complexity of evaluating a formula with n inputs,
 p
size S, and G gates is O(min{n, S, n1/2G1/4}).

For any n, S, G, there is a formula with pn inputs, size at most S, and at
most G gates that requires ⌦(min{n, S, n1/2G1/4}) queries to
evaluate.

Results

The quantum query complexity of evaluating a formula with n inputs,
 p
size S, and G gates is O(min{n, S, n1/2G1/4}).

For any n, S, G, there is a formula with pn inputs, size at most S, and at
most G gates that requires ⌦(min{n, S, n1/2G1/4}) queries to
evaluate.

The above lower bound still holds for any fixed constant depth k > 3.

Results

The quantum query complexity of evaluating a formula with n inputs,
 p
size S, and G gates is O(min{n, S, n1/2G1/4}).

For any n, S, G, there is a formula with pn inputs, size at most S, and at
most G gates that requires ⌦(min{n, S, n1/2G1/4}) queries to
evaluate.

The above lower bound still holds for any fixed constant depth k > 3.

0.555)There is a depth-2 circuit of linear gate count that requires ⌦(n p3/4)queries to evaluate (compare O(n , trivial lower bound of ⌦(n).
)

Quantum applications

Quantum applications

1.055)⌦(n lower bound for checking Boolean matrix multiplication

Given n ⇥ n Boolean matrices A, B, C,
n

decide whether Cij =
_

Aik ^ Bkj for all i, j.

k=1

3/2)Best known upper bound is O(n [Buhrman, Spalek 06]; their
techniques give a linear lower bound.

Quantum applications

1.055)⌦(n lower bound for checking Boolean matrix multiplication

Given n ⇥ n Boolean matrices A, B, C,
n

decide whether Cij =
_

Aik ^ Bkj for all i, j.

k=1

3/2)Best known upper bound is O(n [Buhrman, Spalek 06]; their
techniques give a linear lower bound.

Constant-depth, bounded-fanout circuits with n inputs and G gates

(i.e., circuit size G) have query complexity ⇥̃(min{n, n 1/2G1/4}) .

 Classical applications

Classical applications

Formula gate count lower bound of ⌦(n 2) for PARITY (improving over
[Khrapchenko 71]).

Classical applications

Formula gate count lower bound of ⌦(n 2) for PARITY (improving over
[Khrapchenko 71]).

2�✏)Constant-depth circuit of size O(n) that requires ⌦(n gates to
express as a formula.

(Best previous result we know of this kind gave a similar lower bound
for formula size [Nechiporuk 66, Jukna 12], which is weaker.)

 Idea of the formula evaluation algorithm

Idea of the formula evaluation algorithm

Large formula size) some inputs feed into many gates.

Idea of the formula evaluation algorithm

Large formula size) some inputs feed into many gates.

Search for a 1 among inputs that feed into many OR gates.
If we find one, we eliminate many OR gates.
If we don’t find one, we eliminate many wires.

Idea of the formula evaluation algorithm

Large formula size) some inputs feed into many gates.

Search for a 1 among inputs that feed into many OR gates.
If we find one, we eliminate many OR gates.
If we don’t find one, we eliminate many wires.

Search for a 0 among inputs that feed into many AND gates.
If we find one, we eliminate many AND gates.
If we don’t find one, we eliminate many wires.

Idea of the formula evaluation algorithm

Large formula size) some inputs feed into many gates.

Search for a 1 among inputs that feed into many OR gates.
If we find one, we eliminate many OR gates.
If we don’t find one, we eliminate many wires.

Search for a 0 among inputs that feed into many AND gates.
If we find one, we eliminate many AND gates.
If we don’t find one, we eliminate many wires.

1/2G1/4)Lemma: Using O(n queries, we can produce a formula of size
p
O(n G) with the same value on the given input.

Then apply the read-once formula evaluation algorithm.

Pruning a formula

p

Call an input high-degree if it feeds into more than G OR gates.

Repeatedly search for a marked high-degree input. p
We delete at least G OR gates each time, so we repeat p
k = O(G) times.
jth iteration takes time O(

p
n/mj), where mj is the number of

marked high-degree inputs
mj decreases each step) mk-j > j

p
G)

⇣q
n
⌘

1/2G1/4)Total query complexity:
PO(

O = O(nj=1 j

When there are no marked high-degree inputs, we can delete all wires
from high-degree inputs to OR gates.

Same thing for AND gates. p p
Every input has degree at most G) formula size is O(n G).

Note: No log factors in the analysis.

 Lower bounds for composed formulas

f

g g g...

Q

f o (g, . . . , g)

= ⌦

Q(f)Q(g)

[Reichardt 11]

Lower bounds for composed formulas

f

g g g...

Q f o (g, . . . , g) = ⌦ Q(f)Q(g)

[Reichardt 11]

If the top gate of g is the same as all the bottom gates of f, then these
gates can be combined, and we reduce the depth by 1.

Lower bounds for composed formulas

f

g g g...

Q f o (g, . . . , g) = ⌦ Q(f)Q(g)

[Reichardt 11]

If the top gate of g is the same as all the bottom gates of f, then these
gates can be combined, and we reduce the depth by 1.

Lemma: Let f, g be circuits with nf , ng inputs, depth kf , kg, size Gf , Gg.
Then there exists a circuit h with nh = 4nf ng inputs, depth
kh = kf + kg � 1, size Gh  2Gf + 4nf Gg , such that
Q(h) = ⌦(Q(f)Q(g)). Furthermore, if f is a formula and kg = 1, then
h is a formula of size Sh = Sf Sg.

Optimality of the formula evaluation algorithm

Claim: For any n, S, G, there is a formula with pn inputs, size at most S,
and at most G gates that requires ⌦(min{n, S, n1/2G1/4}) queries
to evaluate.

Optimality of the formula evaluation algorithm

Claim: For any n, S, G, there is a formula with pn inputs, size at most S,
and at most G gates that requires ⌦(min{n, S, n1/2G1/4}) queries
to evaluate.

If the min is n, consider PARITY:
Query complexity ⌦(n) [BBCMW 98, FGGS 98]
Formula size O(n 2) (use x � y = (x ^ ȳ) _ (x̄ ^ y) recursively)

Optimality of the formula evaluation algorithm

Claim: For any n, S, G, there is a formula with pn inputs, size at most S,
and at most G gates that requires ⌦(min{n, S, n1/2G1/4}) queries
to evaluate.

If the min is n, consider PARITY:
Query complexity ⌦(n) [BBCMW 98, FGGS 98]
Formula size O(n 2) (use x � y = (x ^ ȳ) _ (x̄ ^ y) recursively)

Otherwise, compose PARITY with AND:

...
andn

m

paritym

andn
m

andn
m

⇥(n) inputs

size S = O(m 2(n/m)) = O(nm)

gate count G = O(m 2) p
query complexity ⌦(n

p
n/m) = ⌦(nm)

Optimality of the formula evaluation algorithm

Claim: For any n, S, G, there is a formula with pn inputs, size at most S,
and at most G gates that requires ⌦(min{n, S, n1/2G1/4}) queries
to evaluate.

If the min is n, consider PARITY:
Query complexity ⌦(n) [BBCMW 98, FGGS 98]
Formula size O(n 2) (use x � y = (x ^ ȳ) _ (x̄ ^ y) recursively)

Otherwise, compose PARITY with AND:

...
andn

m

paritym

andn
m

andn
m

⇥(n) inputs

size S = O(m 2(n/m)) = O(nm)

gate count G = O(m 2) p
query complexity ⌦(n

p
n/m) = ⌦(nm)

Choosing m appropriately gives the desired result. p p
1/2G1/4(m = S/n if the min is S ; m = G if the min is n)

 Constant-depth formulas (depth ¸ 3)

Constant-depth formulas (depth ¸ 3)

Constant-depth formulas for PARITY have superpolynomial size [Furst,
Saxe, Sipser 84].

Constant-depth formulas (depth ¸ 3)

Constant-depth formulas for PARITY have superpolynomial size [Furst,
Saxe, Sipser 84].

Instead, use the ONTO function [Beame, Machmouchi 10]:

onto : Xn ! {0, 1} Xn = functions from [2n — 2] to [n]

onto(f) = 1 iff f is surjective

encode as a Boolean function of N =(2n — 2) log n bits

Constant-depth formulas (depth ¸ 3)

Constant-depth formulas for PARITY have superpolynomial size [Furst,
Saxe, Sipser 84].

Instead, use the ONTO function [Beame, Machmouchi 10]:

onto : Xn ! {0, 1} Xn = functions from [2n — 2] to [n]

onto(f) = 1 iff f is surjective
x if b = 1

x =encode as a Boolean function of N =(2n — 2) log n bits b

(

x̄ if b = 0

log n�1

Depth-3 formula of size ⇥̃(N2) :
onto(f) =

^ _ ^
f(i)j`

`
j2[n] i2[2n�2] `=0

Constant-depth formulas (depth ¸ 3)

Constant-depth formulas for PARITY have superpolynomial size [Furst,
Saxe, Sipser 84].

Instead, use the ONTO function [Beame, Machmouchi 10]:

onto : Xn ! {0, 1} Xn = functions from [2n — 2] to [n]

onto(f) = 1 iff f is surjective
x if b = 1

x =encode as a Boolean function of N =(2n — 2) log n bits b

(

x̄ if b = 0

log n�1

˜Depth-3 formula of size ⇥(N2) :
onto(f) =

^ _ ^
f(i)j`

`
j2[n] i2[2n�2] `=0

Proposition [BM 10]: The query complexity of ontoN is ⌦(N/ log N).

Constant-depth formulas (depth ¸ 3)

Constant-depth formulas for PARITY have superpolynomial size [Furst,
Saxe, Sipser 84].

Instead, use the ONTO function [Beame, Machmouchi 10]:

onto : Xn ! {0, 1} Xn = functions from [2n — 2] to [n]

onto(f) = 1 iff f is surjective
x if b = 1

x =encode as a Boolean function of N =(2n — 2) log n bits b

(

x̄ if b = 0

log n�1

Depth-3 formula of size ⇥̃(N2) :
onto(f) =

^ _ ^
f(i)j`

`
j2[n] i2[2n�2] `=0

Proposition [BM 10]: The query complexity of ontoN is ⌦(N/ log N).

Using this in place of PARITY gives the same lower bounds for depth-3
formulas, up to a log factor.

Depth-2 formulas

Element distinctness

Given x1, . . . , xn , does there exist 2 [n] i 6= j with xi ?= xj

Depth-2 formulas

Element distinctness

Given x1, . . . , xn 2 [n], does there exist i 6= j with xi = xj?
2/3)Query complexity ⌦(n [Aaronson, Shi 02;Ambainis 05; Kutin 05]

Depth-2 formulas

Element distinctness

Given x1, . . . , xn 2 [n], does there exist i 6= j with xi = xj?
2/3)Query complexity ⌦(n [Aaronson, Shi 02;Ambainis 05; Kutin 05]

Encode as a Boolean function of N = n log n bits

Depth-2 formulas

Element distinctness

Given x1, . . . , xn 2 [n], does there exist i 6= j with xi = xj?
2/3)Query complexity ⌦(n [Aaronson, Shi 02;Ambainis 05; Kutin 05]

Encode as a Boolean function of N = n log n bits

Depth-2 circuit of size O(n3):

log n_ ^

k` k`edN (x) = (xi) ^ (xj)` `
i,j,k2[n] `=1

Depth-2 formulas

Element distinctness

Given x1, . . . , xn 2 [n], does there exist i 6= j with xi = xj?
2/3)Query complexity ⌦(n [Aaronson, Shi 02;Ambainis 05; Kutin 05]

Encode as a Boolean function of N = n log n bits

Depth-2 circuit of size O(n3):

log n_ ^

k` k`edN (x) = (xi) ^ (xj)` `
i,j,k2[n] `=1

Using composition to produce a circuit of size n gives a lower bound
˜ 0.555)of ⌦(n 5/9) = ⌦(n .

Boolean matrix product verification

Boolean semiring:“sum” is OR,“product” is AND

Boolean matrix product verification

Boolean semiring:“sum” is OR,“product” is AND

Boolean matrix product: (AB)ij =
_

Aik ^ Bkj

k

Boolean matrix product verification

Boolean semiring:“sum” is OR,“product” is AND

Boolean matrix product: (AB)ij =
_

Aik ^ Bkj

k

1.055)Claim: Checking whether C = AB requires ⌦(n queries to the
entries of A, B, C.

3/2)
Best known upper bound is O(n [Buhrman, Spalek 06]; their
techniques give a linear lower bound.

Boolean matrix product verification

Boolean semiring:“sum” is OR,“product” is AND

Boolean matrix product: (AB)ij =
_

Aik ^ Bkj

k

1.055)Claim: Checking whether C = AB requires ⌦(n queries to the
entries of A, B, C.

3/2)
Best known upper bound is O(n [Buhrman, Spalek 06]; their
techniques give a linear lower bound.

Matrix-vector product verification: check whether Av = 1 (A fixed, v
given by a black box)

Boolean matrix product verification

Boolean semiring:“sum” is OR,“product” is AND

Boolean matrix product: (AB)ij =
_

Aik ^ Bkj

k

1.055)Claim: Checking whether C = AB requires ⌦(n queries to the
entries of A, B, C.

3/2)
Best known upper bound is O(n [Buhrman, Spalek 06]; their
techniques give a linear lower bound.

Matrix-vector product verification: check whether Av = 1 (A fixed, v
given by a black box)

Formula:
W

i

V
j Aij vj which is a generic monotone depth-2 circuit

0.555)) lower bound of ⌦̃(n 5/9) = ⌦(n

Boolean matrix product verification

Boolean semiring:“sum” is OR,“product” is AND

Boolean matrix product: (AB)ij =
_

Aik ^ Bkj

k

Claim: Checking whether C = AB requires queries to the ⌦(n1.055)
entries of A, B, C.

3/2)
Best known upper bound is O(n [Buhrman, Spalek 06]; their
techniques give a linear lower bound.

Matrix-vector product verification: check whether Av = 1 (A fixed, v
given by a black box)

Formula:
W

i

V
j Aij vj which is a generic monotone depth-2 circuit

0.555)
) lower bound of ⌦̃(n 5/9) = ⌦(n

AB = J is the logical AND of n instances of the above problem p
 19/18) = ⌦(1.055)
) lower bound of ⌦̃(n · n 5/9) = ⌦̃(n n

 Formula gate count lower bounds

Formula gate count lower bounds

Read-many formula evaluation algorithm:

The quantum query complexity of evaluating a formula f with n inputs

1/2G1/4)and G gates is Q(f) = O(n .

Formula gate count lower bounds

Read-many formula evaluation algorithm:

The quantum query complexity of evaluating a formula f with n inputs

1/2G1/4)and G gates is Q(f) = O(n .

Corollary: Any formula representing a function f with n inputs
requires ⌦(Q(f)4/n2) gates.

Formula gate count lower bounds

Read-many formula evaluation algorithm:

The quantum query complexity of evaluating a formula f with n inputs

1/2G1/4)and G gates is Q(f) = O(n .

Corollary: Any formula representing a function f with n inputs

requires ⌦(Q(f)4/n2) gates.

For example, any formula for PARITY must have ⌦(n 2) gates.

Formula gate count lower bounds

Read-many formula evaluation algorithm:

The quantum query complexity of evaluating a formula f with n inputs

1/2G1/4)and G gates is Q(f) = O(n .

Corollary: Any formula representing a function f with n inputs

requires ⌦(Q(f)4/n2) gates.

For example, any formula for PARITY must have ⌦(n 2) gates.

Since G < S , this improves the classic result that the formula size of

PARITY is ⌦(n2) [Khrapchenko 71].

Lower bounds on formula gate count of AC0

Problem: How efficiently can we reexpress a given constant-depth
circuit as a formula?

Lower bounds on formula gate count of AC0

Problem: How efficiently can we reexpress a given constant-depth
circuit as a formula?

Prior work [Nechiporuk 66, Jukna 12]:There is a constant-depth
circuit of linear size such that any formula for the same function has

2�o(1)size at least n .

Lower bounds on formula gate count of AC0

Problem: How efficiently can we reexpress a given constant-depth
circuit as a formula?

Prior work [Nechiporuk 66, Jukna 12]:There is a constant-depth
circuit of linear size such that any formula for the same function has

2�o(1)size at least n .

We show that there is a constant-depth circuit of linear size that

2�✏)requires ⌦(n gates to express as a formula.

Lower bounds on formula gate count of AC0

Problem: How efficiently can we reexpress a given constant-depth
circuit as a formula?

Prior work [Nechiporuk 66, Jukna 12]:There is a constant-depth
circuit of linear size such that any formula for the same function has

2�o(1)size at least n .

We show that there is a constant-depth circuit of linear size that

2�✏)requires ⌦(n gates to express as a formula.

Main idea:

ONTO has query complexity ⌦̃(n), circuit size Õ(n 2)

Recursively composing ONTO with itself gives a circuit with smaller
size but nearly the same query complexity

Open problems

Open problems

Tighter bounds for evaluating depth-2 formulas (= circuits)

Open problems

Tighter bounds for evaluating depth-2 formulas (= circuits)

Possible candidate for an improved lower bound: _ ^
xi L = set of lines in a finite projective plane

`2L i2`

Open problems

Tighter bounds for evaluating depth-2 formulas (= circuits)

Possible candidate for an improved lower bound: _ ^
xi L = set of lines in a finite projective plane

`2L i2`

Formula evaluation upper/lower bounds taking other properties into
account (beyond number of inputs, size, gate count, depth)

Open problems

Tighter bounds for evaluating depth-2 formulas (= circuits)

Possible candidate for an improved lower bound: _ ^
xi L = set of lines in a finite projective plane

`2L i2`

Formula evaluation upper/lower bounds taking other properties into
account (beyond number of inputs, size, gate count, depth)

Circuit evaluation

Open problems

Tighter bounds for evaluating depth-2 formulas (= circuits)

Possible candidate for an improved lower bound: _ ^
xi L = set of lines in a finite projective plane

`2L i2`

Formula evaluation upper/lower bounds taking other properties into
account (beyond number of inputs, size, gate count, depth)

Circuit evaluation

Upper/lower bounds as a function of number of inputs, size, depth

Open problems

Tighter bounds for evaluating depth-2 formulas (= circuits)

Possible candidate for an improved lower bound: _ ^
xi L = set of lines in a finite projective plane

`2L i2`

Formula evaluation upper/lower bounds taking other properties into
account (beyond number of inputs, size, gate count, depth)

Circuit evaluation

Upper/lower bounds as a function of number of inputs, size, depth

Graph collision as a depth-2 circuit of quadratic size or a depth-3
circuit of linear size

