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What am | talking about?

A new measurement-precision
bound:

a generalization of Heisenberg-type
uncertainty relations




* Heisenberg uncertainty relations and gq. Cramer-
Rao bounds

* Our bound: a first moment generalization

 |deas behind the proof

e Prior information?

Abstract: In quantum mechanics, the Heisenberg uncertainty relations and
the Cramer-Rao inequalities typically limit the precision in the estimation of a
parameter through the standard deviation of a conjugate observable. Here we
extend these relations by giving a bound to the precision of a parameter in
terms of the average value of the conjugate observable. This has both
foundational and practical consequences: in quantum optics it resolves a
controversy on which is the ultimate precision in interferometry.




Heisenberg uncertainty relation

“If you have a probe system with spread Ap in momentum, yjOou can
discover its position with uncertainty Ax”
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H is the generator of translations of X:
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Heisenberg uncertainty

To increase precision, prepare and repeat the measurement
v times,

measurement

\probe preparation
? the uncertainty reduces
(central limit theorem) 4 h 1 N\

%Qﬁp ~ JWAH

Remember, we're looking for the AVERAGE position (not the position)
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An achievable lower bound on the precision
for the measurement of a parameter




An achievable lower bound on the precision
for the measurement of a parameter
if probe states are pure and the encoding mechanism is unitary ¢

4 )
—> again AX >

—xH

\. J




An achievable lower bound on the precision
for the measurement of a parameter
if probe states are pure and the encoding mechanism is unitary ¢

4 )
—> again AX >

—xH

\_




Cramer-Rao bound

An achievable lower bound on the precision
for the measurement of a parameter

If probe states are pure and the encoding mechanism is unitary €
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(central limit theorem)

but now x is a parameter (not an observable)
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precision bounded by the variance A*H (second moment)
of the generator H

New bound [ K A
AX > —
VUH
. J
7‘[ — <H> — E‘O\ [0 constant O(1)

ground state (minimum eigenvalue of H)

precision bounded by the expectation value <H>
moment) of the generator H
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a first moment generalization of

Heisenberg uncert. / Cramer-Rao bound

For interferometry:
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Hypothesis behind our bound

Our bound works for sufficiently & T
good estimation strategies e

l.e. that give much better
precision than the prior information:

(I'll get back to this later
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Hypothesis behind our bound

Our bound works for sufficiently & |
good estimation strategies e

l.e. that give much better
precision than the prior information:

(I'll get back to this later)

I mmfmm Hhﬂmm .

(so our bound CAN be beaten if the estimation strategy is BAD:
if you have LOTS OF PRIOR INFORMATION)

 <UNINTERESTING strategies
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Parameter-dependent error

.but AX may depend on the (true value of the) parameter

(so the error can be zero for a specific value of XI; e.g. a broken clock!)




Parameter-dependent error

.but AX may depend on the (true value of the) parameter

(so the error can be zero for a specific value of I} e.g. a broken clock!)

—> our bound holds for the average

AX(z) + AX(2)) . &
>

. 2 VVH,

IF we can find rand :U’sufficiently far apartg

we can always do that if the estimation strategy
IS good enough, i.e. it yields much better
precision than the prior information:
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(for simplicity, unbiased, global estimation, pure states)

Precision gauged through MSE:

4 )

AX =) py)ly — 2]’

\.

p(y) — ‘<ym¢(a¢)>]®V - prob. of obtaining y when the

true value of the v probes was x
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PROOF: main idea

Choose T, 7 such that :E/ —x =2 AX A1

Tchebychev inequality: p(|x — | = )\AX) < 1/)\2

—» the prob that outcome lies within AMAX
of the mean value of [¢(x))*" is <1/\* ©

the prob that outcome lies within AAX
of the mean value of [¢(z/))*" is < 1/\*

—> the overlap cannot be too large!
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4 LOST?

All | said is that we can use the
Tchebyshev inequality to

— connect the error AX to the fidelity [ :

T —xz=2\AX D Fg <33 L

now, we have to connect the fidelity with the
— \expectatlon value H of the translation generator/

— @) <
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Use the g. speed limit

Consider an “evolution” |1)(z")) = e_i(ml_x)H\w(x)j ,wha‘is

the smallest “time” /U at which the fidelity

F = [{y(z)[p(a)|* =€ 2
(i.e. how “fast” can a state evolve?)
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el > T [2 B

for v rObeS’ Cramer Rao term
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This is important — » Cramer-Rao
wins where it is physically
significant, for v — OO
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T [04(6) B(e) }

' — x| > 5 max

vH ' JVAH
remember, we chose A
¥ —x=2\AX > F:€<ﬁ

l a4/ B
:> T a4/ 84/
INAX > — ,

o RZ: VVAH
Whence our bound, if we choose K = SUDP 7T 04(4%)\2)/(4)\)
4 N A
AX K (and also a Heisenberg-uncertainty bound)
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Can we always choose the appropriate 1?

a(4/A)  BMA/AY)
vH ' JVAH

Only if we can choose & and :I:’sufficiently
far apart, i.e. AX must be small.

"= our bound fails for BAD estimation A
strategies, where AX is of the order of the
variation of . Y

¥ —x=20\AX> gmax

e.g., suppose we KNOW the value of &L : there cannot be any bound on the
precision of the determination!!! We know it already!
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Prior information

So, what happens for bad estimation strategies?
)

-
Our bound fills up ALMOST all the space up

N -
. to the prlor\n\formatlon. )

fuis and Rivas have found an estimation
procedure that falls in the gap!

1 Heisenberg
1 scaling

Our modified bound

(modified to take into account the prior
information, By joining our bound to the quantum
Ziv-Zakai bound [Tsang, arXiv:1111.3568])

Prior 1 f
uncertainty |

1 | | | | | | 1 | I | | 1 |
0 1 é 3 w=width of the prior distribu
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So, good estimation strategies are subject to
our b r]d'\*(where we get much more info than the prior)

[ No sub-Heisenberg for good strategies ]

our bound but “almost”.

Can get at most marginally more than |/
the prior information 1
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Prior information

Incidentally...

Ziv-Zakai bound
+

Heisenberg uncertainty/Cramer-Rao part of our
bound

(Tsang already gave the case
of uniform distribution)
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“Advances in Quantum Metrology”, Nature Photonics 5, 222 (2011).
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Our bound is part of the quantum metrology toolki

R A
P
PR .
i
= il
27
: 2 7
3
oy - \
e,
':Iﬂ T a0 \
S i \
= i | AT \
- .I\‘
P \ \
- \ '\\\
b A \ )
v N \ \
NG \
ey i) A
s A ut\l
HH — N
N
=
) =
l
|
(L
=

Quantum-enhanced measurement
procedures (entanglement/squeezing)

; guantum technology-oriented

Determining the ultimate bounds in
measurements / measurement problem

gquantum foundations

Curious? — » Recent review:

“Advances in Quantum Metrology”, Nature Photonics §, 222 (2011).



What did | say?!?

* Heisenberg uncertainty relations and q. Cramer-
Rao bounds

* Our bound: a first moment generalization
* |deas behind the proof

e Prior information —> sub-Heisenberg strategies
exist, but are useless.




Take home message

Bound: arXiv:1109.5661
Prior info: arXiv:1201.1878
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