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Introduction (4 transparencies)
 

detecting a signal θ 

Universal structure of any signal detection: 
A probe in a known state ψ experiences a signal-dependent transformation.
 
The change of the probe state is monitored by a measurement X
 
The outputs allow us to estimate the unknown value of the signal.
 

Linear versus nonlinear transformations (single-mode picture) 

+ k >1
G = a a +G = (a a) 
Main objective: ~ 
to obtain estimates as close as possible to the true value of the signal θ (x) 
with minimum uncertainty ~ 

Δθ 



  
   

    

      

      
  

  

    
        

         

~ determines resolution and 
key point: uncertainty Δθ (X ,G,ψ ) 

allows us to compare different schemes 

Several performance estimators: Fisher information Cramér-Rao bound 

2~ 1 1 ⎛ dP(x |θ ) ⎞Δθ = F = ∫ dx ⎜ ⎟
 
 F P(x |θ )⎝ dx ⎠ 

N = number of repetitions of the measurement 
F = Fisher information 
P = Statistics

To be completed with:
 
efficiency (how many N are necessary to reach the Cramér-Rao bound?)
 
prior information (does detection actually improves knowledge of the signal?)
 



        

 

 

 

 

    

  

     

   

  

 

      Fixed mean number of photons = ntotal 

N = repetitions of the measurement 

a + aψn = mean number of photons in the probe n = ψ 

Heisenberg limit = Best believed resolution for linear generators G = a + a 
two versions 

total
min 2

1~ 
= 

strong Heisenberg limit 

1 
Δθ 

weak Heisenberg limit 

~ 1
Δθ

min = 
2 n 1 

≥ 
n n In practice reached when 

= 1, n = total 

say  n ≈ 10
 



 

         
                       

           

           
         

 

         
                   

 

    
 

 

First part 
Nonlinear schemes: better than both Heisenberg limits even with probes 
in robust and intense (plenty of photons) classical states 

12 ~ 
= (a + ) Δθ << 

2 n G a min 

Second part 
Fisher information is nonlinear on resources F ∝ n 2 

This allows to reach strong Heisenberg limit for large number N of runs 
in linear schemes (very appropriate for weak nonclassical probes) 

~ 1+G = a a Δθ
min ≈ , for  >> 1 

2 n 

Third part 
Alternative assessments or uncertainty (≠ variance): 
contradictions and lack of limits? even for linear schemes 



     

           
    

 

                 
             

 

                 
     

First part (5 transparencies) 

Nonlinear schemes: better than any Heisenberg limit even with probes 
In robust classical states 

G = (a + a)2 Δθ 
~
min << 

2

1 

n
 

Usually nonlinear processes are used to prepare probes in 
optimum nonclassical probes required to reach the Heisenberg 
limits. 

Better results are obtained using nonlinearity to imprint the
 
signal on classical probes.
 



      

           

         

               

    

        

 

     

 

Nonlinear generators: propagation in optically nonlinear media 

simple illustration: rotation sensor = Nonlinear gyroscope 

Rotation is detected by the phase change experienced by a light wave. 

The phase shift depends on the optical path L. weak signal L ∝θ 

Because of nonlinearity the phase change depends on the intensity of the input wave. 

nonlinear optics for example Kerr effect 

2k(n ) ∝ n , n ,K
 

phase shift ∝ nθ
 

Nonlinearity can amplify the signal 



 

 

 

 

            

     

 

2+Nonlinear generators (Kerr effect) + classical probe G = (a a)

probe in a coherent state: ~ 1

Δθ ∝ 
1/ 2 3/ 2 n 

weak Heisenberg limit strong Heisenberg limit 

~ 1~ 1 Δθ
min =Δθ = 

min 2 n2 n 

1>>n 



      
          

   

Other proposals: two-body interactions on Bose-Einstein condensates 
Boixo, Davis, Tacla, Flammia, Caves, Geremia, Rey, Jiang, Lukin, Datta, 
Shaji, Bagan, Choi, Sundaram…. 



 
       

         

 

  
  

 

 

 

 

        

Further example:
 
detection of mirror displacements ℓ in a nonlinear Michelson
 

interferometer illuminated with light pulses of n photons and duration ττττ
 

phase photons 
randomization per pulse thermal photons 

quantum 
efficiency 

1+ησ 2 n + n 
Δ l = t Δ l linear n2hωn
 

n0 Aτ
 
1+ 

pulse 
nonlinear duration 
index pulselinear 

transverseindex 
width 

Resolution depends not only on n but also on A and τ 





         
                       

         

     

    
 

Second part (8 transparencies) 

Fisher information is nonlinear on resources F ∝ n 2 

This allows to reach strong Heisenberg limit for large number N of runs 
in linear schemes (suitable for weak probes) 

~ 1
 
G = a + a Δθ ≈ , for  >> 1

min 2 n 
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Exploiting nonlinearity of estimators, even for linear schemes
 

~ 1 + 2 n = ψ a + aψG = a a F ∝ nΔθ = 
F 

ν << 1, µν ≈ 1Probe close to the vacuum ψ = µ 0 +ν ψν ν 

= vacuum
 

ψ
 strongly squeezed state / far from the vacuum ν
n
+ψ a aψ = >> 1ν ν 
ν 2 

n = ψ a + aψ = independent of ν 

mean photon number can be small,
 
(in accordance with the small photon number of nonclassical states)
 



      

      

Coherent version of the proposal in
 

Coherence may more effectively improve resolution
 



    

     

   

  
 

  

   

  
  

 
 

 

homodyne detection, signal= phase shift 
2+ |x> eigenstates of quadrature X iθa aP(x |θ ) = x e ψ 

retaining just terms linear in ν 
⎛ 2 2 ⎡ 2 ⎤⎞1 ⎜ −x / 2 2ν −x / 4 (x −Yνθ ) ⎟p(x |θ ) ≈ e + cos(Y x / 2)e exp⎢− ⎥ν

2π ⎜ ΔXν ⎢⎣ 4(ΔXν )2 ⎥⎦
⎟
⎠⎝ 

2 
2 ν 

2(ΔX ) = X variance in state ψνν 2 2 4n2n ν Y 
F ≈ = 

(ΔXν )2 ν 22n mean Y in state ψνY =ν ν 

?~ ν 1
Δθ = < weak Heisenberg limit = 

2 n 2 n Two issues 
~ ν ? 1 § Efficiency 

Δθ = < strong Heisenberg limit = § Prior 
2 n 2 n 



          

             

 

        

      First issue: efficiency = how many repetitions? 

small peak → many repetitions N are necessary to locate the peak 

­2 ­1 0 1 2 3 

0.2 

0.4 

0.6 

0.8 

­0.4 ­0.2 0.0 0.2 0.4 

0.2 

0.4 

0.6 

0.8 ν = 0.1, n = 10, θ = 0.001 

Number of measurements N required to locate the peak with probability of error η 
Kullback-Leibler divergence S 

− S e ≤η
 

For distributions close to the vacuum pvac(x) 

1/ 4 1/ 4⎛ δp(x) ⎞ ln(1/η) ⎛π ⎞ n 
S = ∫ dx[pvac(x) +δp(x)]ln⎜⎜1+ ⎟⎟ ≈ ∫ dxδp(x) = peak area → > ⎜ ⎟ 

3/ 2p (x) 2 ⎝ 2 ⎠ ν⎝ vac ⎠ 



 

         

 

      

        

Second issue: final uncertainty smaller than prior uncertainty? 

Ziv-Zakai bound 

M. Tsang arXiv: 111.3568 [quant-ph] rectangular prior of width W 

W ⎛ 2 ⎞~ 2 1 ⎛ τ ⎞ + ⎟(Δθ ) = dττ ⎜1− ⎟ 1− 1− ψ exp(iτ a a)ψ 
⎟ZZ 

2 ∫ ⎝ W ⎠⎜
⎜ 

0 ⎝ ⎠ 
~ 

Δθ better than prior uncertainty W provided that ν 2 ≥ 1ZZ



       

             

     

    

        

  
  

 ν 2 ≥ 1 doing much better than prior precludes beating strong Heisenberg limit 

~ ν 1
Δθ = > = strong Heisenberg limit 

2 n 2 n 

V. Giovannetti, S. Lloyd, L. Maccone, arXiv: 1109.5661 

M. J. W. Hall, D. W. Berry, M. Zwierz, H. M. Wiseman, arXiv: 1111.0788 

M. Tsang arXiv: 1111.3568v3 

V. Giovannetti, L. Maccone, arXiv:1201.1878v1 



                                                  

 

 

  

  

       

         

Example
 5 −3η = 0.05, n = 10, ν = 0.01, = 10 , W = 10 

small peak better than prior 
1/ 4 1/ 4ln(1/η) ⎛π ⎞ n 2
5 3= 10 > ⎜ ⎟ 

3/ 2 
= 4×10 ν = 10 > 1 

2 ⎝ 2 ⎠ ν
 

~ ν ~ −6
−6 Δθ = 1.7×10Δθ = = 1.6×10 ZZ
2 n 

~ 1 −4−7 Δθ = = 1.6×10Δθ 
~ 

= 
1 

= 5×10 weakstrong 2 n2 n 

Very close to strong Heisenberg limit with small photon numbers 

~ ~ ~ ~ 
Δθ ≈ Δθ ≈ 3Δθ << ΔθZZ strong weak 

~ −4For standard squeezed case (u=1) same N and⎯⎯⎯⎯n Δθ = 1.6×10ZZ





       
           

     

       

      

     

Third part (9 transparencies) 

Typical wisdom: Quantum limits arise from uncertainty relations 

Typically, uncertainty is measured using variance.
 

This is not the only possibility.
 

Alternative assessments of uncertainty:
 
contradictions and lack of uncertainty?
 



          
     

       

     

        

.Too much weight on extreme, unlikely values of the variable 
(leading to divergences in simple situations) 

. Not practical for phase/angular variables because of periodicity 

. Trivial uncertainty relation in finite-dimensional systems 

ΔAΔB ≥ 0 !A can be zero while !B is always finite 



   

 

        

1 
Exponential of Renyi entropies R (X ) = {∫ dx[P(x)]q }1−qq 

1− dx[P(x)]∫ q 

Tsallis entropies Sq (A) = 
q −1 

P(x) = statistics of observable X q = real parameter 



   

       

        

    spin ½ example ψ = cosβ ↑ + sin β ↓
 

R (σ )R (σ )
q z q x
 

β
 

from top to bottom 
q=0.5 
q=1 
q=2 
q=3 

states β=π/8 have maximum joint uncertainty for q=0.5, 1
 

states β =π/8 have minimum joint uncertainty for q=2, 3
 



        Joint uncertainty of complementary observables may have no lower bound. 

R (x)R ( p) → 02 2 





       

         

   

       

      

       

Covariant detection of displacements P(x|θ) = P(x-θ)
 

Distance between the statistics before P(x) and after P(x- θ) the displacement θ 

∞ 
1/ q12 q q

D = 
2 ∫ dx([P(x −θ )] − [P(x)] ) 
−∞ 

2 1/ q
For small signals D ≈θ F (q) 

1/ q ∞ 1/ q 1/ q ∞ 1/ q 
q (q−1) / q ⎡dP(x)⎤ q ⎡dP(x) / dx ⎤ 

F (q) = dx[P(x)] = dxP(x)∫ ⎢ ⎥ ∫ ⎢ ⎥
2 ⎣ dx ⎦ 2 P(x)⎣ ⎦−∞ −∞ 

F determines the visibility of the displacement 

1
Larger means F larger resolution: minimum signal θmin ∝ 

Fq (q) 
For q=1/2 this is Fisher information and Cramér-Rao bound 



 

      

  

Probe = free particle in exponential state
 

α2 ⎞P(x) = 
1/α 

exp⎛⎜− 2 x / γ α
⎟
⎠2γΓ(1/α ) ⎝ 

α, γ state parameters 

1=H 

2 2 /α 
2 2 α 2 Γ(2 −1/α )

H = mean energy free particle = p = (Δp) = 
24γ Γ(1/α ) 

⎛α + q −1⎞
Γ ⎟⎟⎜⎜ 1/(2q)
⎝ αq ⎠ ⎡ 2 Γ(1/α ) ⎤ α + q > 1 α > 1/ 2F (q,α ) = 4q H 
Γ(1/α ) ⎢

⎣ Γ(2 −1/α )⎥⎦ 



      
     

 
 
  

 

⎛α + q −1⎞
Γ ⎟⎟⎜⎜ 1/(2q)
⎝ αq ⎠ ⎡ 2 Γ(1/α ) ⎤ 

F (q,α ) = 4q H 
Γ(1/α ) ⎢

⎣ Γ(2 −1/α )⎥⎦ 

Arbitrary large resolution as αααα→1-q or ∞∞∞∞ 
(for any fixed mean energy) 

Contradiction 
between 
different values 
for q 

1=H 



      
  

  
            

      
     
     

             
         

         
        

Summarizing 

§ Nonlinearity improves quantum resolution via two ways: 
(i) Generate nonclassical probes 
(ii) Imprint signal information 

The optimum way of using nonlinearity is (ii) . Three main features: 
(a) uncertainty decreases below the Heisenberg limit 
(b) classical robust probes can be used 
(c) resolution depends on new variables 

§ Nonlinearity of performance estimators may be used to beat weak form of 
Heisenberg limit with very weak probes approaching the strong limit 

§ Different performance measures may lead to contradictory conclusions 
and arbitrarily high resolution not limited by quantum mechanics 
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A. Luis, SPIE reviews 1, 018006 (2010) 

Challenging metrological limits via coherence with the vacuum 
Á. Rivas and A. Luis, arXiv:1105.6310 

Precision quantum metrology and nonclassicality in linear and 
nonlinear detection schemes 
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Effect of fluctuation measures on the uncertainty relations between 
two observables: Different measures lead to opposite conclusions 
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