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Introduction (4 transparencies)

estimation
detecting a signal 6 N 5
[v> exp(i6G)|y> ==\4
AD—>— exp(i6G) >
probe measurement X

T\signal 0

Universal structure of any signal detection:
A probe in a known state g experiences a signal-dependent transformation.

The change of the probe state is monitored by a measurement X
The outputs allow us to estimate the unknown value of the signal.

Linear versus nonlinear transformations (single-mode picture)
_ + >1
G=a a G = (aJraz),c
Main objective:

to obtain estimates as close as possible to the true value of the signal &(x)
with minimum uncertainty ~
A6



estimation

transformation 6
|y> exp(i0G)|y> =\
_A)—>— exp(i6G) =] y
probe measurement X

/T\signal 0

key point: uncertainty A8 (X,G,y) determines resolution and

allows us to compare different schemes

Several performance estimators: Fisher information Cramér-Rao bound

1 ) 1 (dP(x|6))
JNF F_jdxp(xw)( dx J

N = number of repetitions of the measurement
F = Fisher information
P = Statistics

AG =

To be completed with:
efficiency (how many N are necessary to reach the Cramér-Rao bound?)
prior information (does detection actually improves knowledge of the signal?)



Fixed mean number of photons (.1 = n

N = repetitions of the measurement
n = mean number of photons in the probe 7 = (w|a"aly)

Heisenberg limit = Best believed resolution for linear generators G =a"a

two versipns
weak Heisenberg limit strong Heisenberg limit
~ 1 ~ 1
meoymg I T2 botal
N In practice reached when
=1, n="toal

Both reached with probes in nonclassical states

strony form not practical:

currently nonclassical states ave small photon numbers
say n =10



First part

Nonlinear schemes: better than both Heisenberg limits even with probes
in robust and intense (plenty of photons) classical states

~ 1
G = (a+a)2 AO . <<

2 n

Second part

Fisher information is nonlinear on resources ﬁz
This allows to reach strong Heisenberg limit for large number N of runs
in linear schemes (very appropriate for weak nonclassical probes)

~ 1

Third part

Alternative assessments or uncertainty (# variance):
contradictions and lack of limits? even for linear schemes



First part (5 transparencies)

Nonlinear schemes: better than any Heisenberg limit even with probes
In robust classical states

~ 1
G = (a+a)2 Aé?min << 5

Usually nonlinear processes are used to prepare probes in
optimum nonclassical probes required to reach the Heisenberg
limits.

Better results are obtained using nonlinearity to imprint the
signal on classical probes.



Nonlinear generators: propagation in optically nonlinear media

simple illustration: rotation sensor = Nonlinear gyroscope
Rotation is detected by the phase change experienced by a light wave.
The phase shift depends on the optical path L.  weak signal [ oc ¢

Because of nonlinearity the phase change depends on the intensity of the input wave.

' ics for example Kerr eff
00 +0 nonlinear optics for example Kerr effect
k(i) oc 7, 712,...

phase shift oc 7 6

eik(ﬁ)L
Nonlinearity can amplify the signal



Nonlinear generators (Kerr effect) + classical probe G= (aJ’a)2

probe in a coherent state: ~ 1
AG 537
n
weak Heisenberg limit strong Heisenberg limit
~ 1 ~ 1

Weak and strong Heisenberg limits can be beaten with nonfinear schemes

and classical probes

Key points:
n>>1 and robustness of classical states



Interaction-based quantum metrology showing
scaling beyond the Heisenberg limit

M. Napolitano', M. Koschorreck', B. Dubt:-st"z, N. Behbood', R.J. Sewell' & M. W. Mitchell'
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Other proposals: two-body interactions on Bose-Einstein condensates
Boixo, Davis, Tacla, Flammia, Caves, Geremia, Rey, Jiang, Lukin, Datta,
Shaji, Bagan, Choi, Sundaram....



Further example:
detection of mirror displacements € in a nonlinear Michelson
interferometer illuminated with light pulses of n photons and duration t

nonlinar é Ie phase photons
1 - randomizatio per pulse thermal photons
g?gserent . & guantum
l g i efficiency
o> *_ 770 n +nt
' AL linear

5 nyhon
A
] / nO T \ pu|se

vacuumy nonlinear / \ duration

index .
linear pulse
index transverse
width

Resolution depends not only on n but also on A and 7

IIEW\IariallleSH new limits, new deviCeS



Brief relaxation

yhile shifting from the firsttothe scond pa




Second part (8 transparencies)

Fisher information is nonlinear on resources [ n 2
This allows to reach strong Heisenberg limit for large number N of runs
in linear schemes (suitable for weak probes)

~ 1

G=a"a AO_. =~ = for >>1




Exploiting nonlinearity of estimators, even for linear schemes

AG =L G=aa Fon? n=(yl|a"dy)

JF

Probe close to the vacuum ‘W> = ,uv‘ O> + V‘ ‘//v> v<<l, u, =1

O> = vacuum

Wv> strongly squeezed state / far from the vacuum

<l//v ‘a+a‘ Wv> = % >>1
14

n= <l// ‘a+a‘ l//> = independent of v

mean photon number can be small,
(in accordance with the small photon number of nonclassical states)



Coherent version of the proposal in

week endin

PRL 104, 103602 (2010) PHYSICAL REVIEW LETTERS 12 MARCH 2010

Quantum Metrology with Two-Mode Squeezed Vacuum:
Parity Detection Beats the Heisenberg Limit

Petr M. Anisimov,” Gretchen M. Raterman, Aravind Chiruvelli, William N. Plick, Sean D. Huver,
Hwang Lee, and Jonathan P. Dowling

Hearne Institute for Theoretical Physics and Department of Physics and Astronomy, Louisiana State University,
Baton Rouge, Louisiana 70803, USA
(Received 4 November 2009; published 12 March 2010)

Coherence may more effectively improve resolution



homodyne detection, signal= phase shift

2

A+ )
P(x|6)= <x‘ezea a‘l//> x> eigenstates of quadrature X

retaining just terms linear in v

2 _ 2 _Y.0)2
p(x|0) = l[ex /24 2v cos(va/Z)e_x /4 exp{— (x=10) D
27 AX

VA i,
2
(AX, )2 _ ‘2/_’7 X variance in state ‘Wv> 252 4772
F = =
g N2 mean Y in state ‘Wv> (Ax, )} V2
v
v

?

AG = < weak Heisenberg limit =

2‘/_” 2V 7 Two issues

~ . . 1 ici
AG = < strong Heisenberg limit = 3 Efficiency

2\/_’1 2 7 8§ Prior




First issue: efficiency = how many repetitions?
small peak — many repetitions N are necessary to locate the peak
08 0 V:O.l, ﬁ=10, 920001
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Number of measurements N required to locate the peak with probability of error n

Kullback-Leibler divergence S _NS
e <7

For distributions close to the vacuum p,,.(X)
/4 -1/4

5= il 1+ < ) -peakara >0

PvacX¥ \/5 2 V3/2




Second issue: final uncertainty smaller than prior uncertainty?

Ziv-Zakai bound

M. Tsang arXiv: 111.3568 [quant-ph] rectangular prior of width W

8- Joo - 1okl

AB,, better than prior uncertainty W provided that vZ>1




V2 >1 doing much better than prior precludes beating strong Heisenberg limit

1% 1
> —— = strong Heisenberg limit
0N w2 7

AG =

Recent confirmations (september 201 L-amuary 2012) of the strong form of Helsenberg imit for [inear schemes
under different prior asumptions. Universal confirmation’

V. Giovannetti, S. Lloyd, L. Maccone, arXiv: 1109.5661

M. J. W. Hall, D. W. Berry, M. Zwierz, H. M. Wiseman, arXiv: 1111.0788

M. Tsang arXiv: 1111.3568v3

V. Giovannetti, L. Maccone, arXiv:1201.1878v1



Beating the weak tnractican form of the Heisenberg limit?
Approaching strong form with N>>1

Example | 7=0.05, 7=10, v=001, =10, W =10
small peak better than prior
~10° > ln%”) (g)m f;jz —4x10° v? =10>1

AG = 2}5 =1.6x107° AO77 =1.7x107°
A =t 51077 Abyy - _i6x107
g 2 7 2\/711

Very close to strong Heisenberg limit with small photon numbers

AO ~ AHZZ ~3A0

strong << A‘gweak

For standard squeezed case (v=1) same N and n AgZZ ~1.6x107%
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Third part (9 transparencies)

Typical wisdom: Quantum limits arise from uncertainty relations

Typically, uncertainty is measured using variance.

This is not the only possibility.

Alternative assessments of uncertainty:
contradictions and lack of uncertainty?



v'Too much weight on extreme, unlikely values of the variable
(leading to divergences in simple situations)

X7 P(x)

P(x)

30 5 0 5 10 A0 5 0 5 10
X X

v" Not practical for phase/angular variables because of periodicity

v Trivial uncertainty relation in finite-dimensional systems

AAAB >0  AA can be zero while AB is always finite



ALTERNATIVE FAMILIES OF MEASURES

1
Exponential of Renyi entropies Rq (X)= {[dx[P(x)]q }E

1- [P
qg—1

Tsallis entropies Sq (4) =

P(x) = statistics of observable X g = real parameter



spin¥% example ) = cos ,B‘ T> +sin ,B‘ ¢>

Rq (GZ)Rq (x) from top to bottom
g=0.5
0=1
q=2
0=3
0286 056 0756 1 125 1.5
B

states B=n/8 have maximum joint uncertainty for q=0.5, 1

states B =n/8 have minimum joint uncertainty for q=2, 3

Fully contradictory results
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Joint uncertainty of complementary observables may have no lower bound.

Ry ()R (p) — 0



This sugoests that measures of uncertainfy
alternative to variance in quantum metrology may lead to
)¢ ntradictorywﬁclusions

Ti) 10 quantjm lmi




Covariant detection of displacements P(x|8) = P(x-6)

Distance between the statistics before P(x) and after P(x- 0) the displacement 6

p? =5 Jalpe-ol-freop ]

For small signals D? ~ 0" 1F(q)

1/qg © 1/q /g o »
A R P TS

gelléralized Fisher infOI‘mgItiOIl

F determines the visibility of the displacement

1

Larger means F larger resolution: minimum signal Opmin € ——
Fi(q)

For g=1/2 this is Fisher information and Cramér-Rao bound



Probe = free particle in exponential state
a2l p P(x) 1_0_ H=1 0=3/4
= exp(— Z‘x/y‘ j :
27/1_‘(1/05) 08/

06

P(x)

a, v state parameters

04

02+

— — 252/
: 2 I'2-1
H = mean energy free particle = p = (Ap)* = ¢ 5 2-1/a)
4y I'l/«)

F(a+q—1j )
F(q,a)= *q 40 H I'(l/a) a+q>1 a>1/2
’ I'd/a) r2-1/a)



=

Arbitrary large resolutian as a—1-q or o«
(for any fixed mean energy)

o
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q=1/4 20 H=l Contradlctlon
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10 for q
O.Si
CeEtz \ ; q=2
X Q7 a 08 0.9 1.0 n L |2 f L . ;1 1 i i é i i i 18 . i g 1,0



Summarizing

8 Nonlinearity improves quantum resolution via two ways:
() Generate nonclassical probes
(i) Imprint signal information
The optimum way of using nonlinearity is (ii) . Three main features:
(a) uncertainty decreases below the Heisenberg limit
(b) classical robust probes can be used
(c) resolution depends on new variables

§ Nonlinearity of performance estimators may be used to beat weak form of
Heisenberg limit with very weak probes approaching the strong limit

§ Different performance measures may lead to contradictory conclusions
and arbitrarily high resolution not limited by qguantum mechanics



These results are contained In :
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A. Luis, SPIE reviews 1, 018006 (2010)

Challenging metrological limits via coherence with the vacuum
A. Rivas and A. Luis, arXiv:1105.6310

Precision quantum metrology and nonclassicality in linear and
nonlinear detection schemes
A. Rivas and A. Luis, Phys. Rev. Lett. 105, 010403 (2010)

Effect of fluctuation measures on the uncertainty relations between
two observables: Different measures lead to opposite conclusions
A. Luis, Phys. Rev. A 84, 034101 (2011)
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A. Luis and A. Rodil, arXiv:1201.3072



